Follow
Vladimir Karpukhin
Vladimir Karpukhin
facebook AI research
Verified email at fb.com
Title
Cited by
Cited by
Year
Retrieval-augmented generation for knowledge-intensive nlp tasks
P Lewis, E Perez, A Piktus, F Petroni, V Karpukhin, N Goyal, H Küttler, ...
Advances in Neural Information Processing Systems 33, 9459-9474, 2020
48822020
Dense passage retrieval for open-domain question answering
V Karpukhin, B Oğuz, S Min, P Lewis, L Wu, S Edunov, D Chen, W Yih
arXiv preprint arXiv:2004.04906, 2020
32482020
KILT: a benchmark for knowledge intensive language tasks
F Petroni, A Piktus, A Fan, P Lewis, M Yazdani, N De Cao, J Thorne, ...
arXiv preprint arXiv:2009.02252, 2020
5022020
Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen tau Yih. 2020
V Karpukhin, B Oguz
Dense passage retrieval for opendomain question answering, 2004
1572004
Cm3: A causal masked multimodal model of the internet
A Aghajanyan, B Huang, C Ross, V Karpukhin, H Xu, N Goyal, D Okhonko, ...
arXiv preprint arXiv:2201.07520, 2022
1542022
Unik-qa: Unified representations of structured and unstructured knowledge for open-domain question answering
B Oguz, X Chen, V Karpukhin, S Peshterliev, D Okhonko, M Schlichtkrull, ...
arXiv preprint arXiv:2012.14610, 2020
1132020
Aligned cross entropy for non-autoregressive machine translation
M Ghazvininejad, V Karpukhin, L Zettlemoyer, O Levy
International Conference on Machine Learning, 3515-3523, 2020
1122020
Training on synthetic noise improves robustness to natural noise in machine translation
V Karpukhin, O Levy, J Eisenstein, M Ghazvininejad
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), 42-47, 2019
1122019
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv 2005
PSH Lewis, E Perez, A Piktus, F Petroni, V Karpukhin, N Goyal, H Küttler, ...
arXiv preprint arXiv:2005.11401, 0
79
Neurips 2020 efficientqa competition: Systems, analyses and lessons learned
S Min, J Boyd-Graber, C Alberti, D Chen, E Choi, M Collins, K Guu, ...
NeurIPS 2020 Competition and Demonstration Track, 86-111, 2021
742021
Multi-task retrieval for knowledge-intensive tasks
J Maillard, V Karpukhin, F Petroni, W Yih, B Oğuz, V Stoyanov, G Ghosh
arXiv preprint arXiv:2101.00117, 2021
612021
Retrievalaugmented generation for knowledge-intensive nlp tasks, 2020b
P Lewis, E Perez, A Piktus, F Petroni, V Karpukhin, N Goyal, H Küttler, ...
URL https://arxiv. org/abs/2005 11401, 2005
602005
Domain-matched pre-training tasks for dense retrieval
B Oğuz, K Lakhotia, A Gupta, P Lewis, V Karpukhin, A Piktus, X Chen, ...
arXiv preprint arXiv:2107.13602, 2021
592021
The web is your oyster-knowledge-intensive NLP against a very large web corpus
A Piktus, F Petroni, V Karpukhin, D Okhonko, S Broscheit, G Izacard, ...
arXiv preprint arXiv:2112.09924, 2021
502021
Unified open-domain question answering with structured and unstructured knowledge
B Oguz, X Chen, V Karpukhin, S Peshterliev, D Okhonko, M Schlichtkrull, ...
arXiv preprint arXiv:2012.14610, 2020
352020
Joint verification and reranking for open fact checking over tables
M Schlichtkrull, V Karpukhin, B Oğuz, M Lewis, W Yih, S Riedel
arXiv preprint arXiv:2012.15115, 2020
272020
Sewon Min, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020
V Karpukhin, B Oguz
Dense passage retrieval for open-domain question answering. CoRR, abs, 2004
222004
Nonparametric decoding for generative retrieval
H Lee, J Kim, H Chang, H Oh, S Yang, V Karpukhin, Y Lu, M Seo
arXiv preprint arXiv:2210.02068, 2022
172022
Discourse-aware soft prompting for text generation
M Ghazvininejad, V Karpukhin, V Gor, A Celikyilmaz
arXiv preprint arXiv:2112.05717, 2021
62021
Discourse-aware prompt design for text generation
M Ghazvininejad, V Karpukhin, A Celikyilmaz
arXiv preprint arXiv:2112.05717, 2021
42021
The system can't perform the operation now. Try again later.
Articles 1–20