Florence d'Alché-Buc
Florence d'Alché-Buc
Télécom Paris, Institut Polytechnique de Paris
Bestätigte E-Mail-Adresse bei telecom-paris.fr - Startseite
Zitiert von
Zitiert von
Gene networks inference using dynamic Bayesian networks
BE Perrin, L Ralaivola, A Mazurie, S Bottani, J Mallet, F d’Alche–Buc
Bioinformatics 19 (suppl_2), ii138-ii148, 2003
Estimating parameters and hidden variables in nonlinear state-space models based on ODEs for biological networks
M. Quach, N Brunel, F d'Alché-Buc
Bioinformatics 23 (23), 3209-3216, 2007
Support vector machines based on a semantic kernel for text categorization
G Siolas, F d'Alché-Buc
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural …, 2000
Incremental support vector machine learning: A local approach
L Ralaivola, F d’Alché-Buc
International Conference on Artificial Neural Networks, 322-330, 2001
Semi-supervised marginboost
F d'Alché-Buc, Y Grandvalet, C Ambroise
Advances in neural information processing systems, 553-560, 2001
Autoregressive models for gene regulatory network inference: Sparsity, stability and causality issues
G Michailidis, F d’Alché-Buc
Mathematical biosciences 246 (2), 326-334, 2013
Semi-supervised penalized output kernel regression for link prediction
C Brouard, F d'Alché-Buc, M Szafranski
Proceedings of the 28th International Conference on Machine Learning (ICML …, 2011
Dynamical modeling with kernels for nonlinear time series prediction
L Ralaivola, F d'Alche-Buc
Advances in neural information processing systems 16, 129, 2004
Kernelizing the output of tree-based methods
P Geurts, L Wehenkel, F d'Alché-Buc
Proceedings of the 23rd international conference on Machine learning, 345-352, 2006
Time series filtering, smoothing and learning using the kernel Kalman filter
L Ralaivola, F d'Alché-Buc
Proceedings. 2005 IEEE International Joint Conference on Neural Networks …, 2005
RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements
B Chatagnon, Veber, Morin, Bedo, Triqueneaux, Sémon, Laudet, d'Alché-Buc
Nucleic Acids Research 43 (10), 4833-4854, 2015
Fast metabolite identification with input output kernel regression
C Brouard, H Shen, K Dührkop, F d'Alché-Buc, S Böcker, J Rousu
Bioinformatics 32 (12), i28-i36, 2016
Improving reproducibility in machine learning research (a report from the neurips 2019 reproducibility program)
J Pineau, P Vincent-Lamarre, K Sinha, V Larivière, A Beygelzimer, ...
Journal of Machine Learning Research 22, 2021
Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset
C Auliac, V Frouin, X Gidrol, F d'Alché-Buc
BMC bioinformatics 9 (1), 1-14, 2008
Inferring biological networks with output kernel trees
P Geurts, N Touleimat, M Dutreix, F d'Alché-Buc
BMC bioinformatics 8 (2), 1-12, 2007
System monitoring the discharging period of the charging/discharging cycles of a rechargeable battery, and host device including a smart battery
JN Patillon, F D'Alche-Buc, JP Nadal
US Patent 5,936,385, 1999
Input output kernel regression: Supervised and semi-supervised structured output prediction with operator-valued kernels
C Brouard, M Szafranski, F d’Alché-Buc
Journal of Machine Learning Research 17 (176), 1-48, 2016
Operator-valued kernel-based vector autoregressive models for network inference
N Lim, F d’Alché-Buc, C Auliac, G Michailidis
Machine learning 99 (3), 489-513, 2015
Confidence measures for neural network classifiers
H Zaragoza, F d’Alché-Buc
Proceedings of the Seventh Int. Conf. Information Processing and Management …, 1998
Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction
M Heinonen, O Guipaud, F Milliat, V Buard, B Micheau, G Tarlet, ...
Bioinformatics 31 (5), 728-735, 2015
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20