Folgen
Guansong Pang
Guansong Pang
Assistant Professor of Computer Science, Singapore Management University
Bestätigte E-Mail-Adresse bei smu.edu.sg - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Deep Learning for Anomaly Detection: A Review
G Pang, C Shen, L Cao, AVD Hengel
ACM Computing Surveys (CSUR) 54 (2), 1-38, 2021
16612021
Viral Pneumonia Screening on Chest X-rays Using Confidence-Aware Anomaly Detection
J Zhang, Y Xie, G Pang, Z Liao, J Verjans, W Li, Z Sun, J He, Y Li, C Shen, ...
IEEE Transactions on Medical Imaging, 2020
863*2020
An improved K-nearest-neighbor algorithm for text categorization
S Jiang, G Pang, M Wu, L Kuang
Expert Systems with Applications 39 (1), 1503-1509, 2012
4002012
Deep anomaly detection with deviation networks
G Pang, C Shen, A van den Hengel
Proceedings of the 25th ACM SIGKDD international conference on knowledge …, 2019
3082019
Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning
Y Tian, G Pang, Y Chen, R Singh, JW Verjans, G Carneiro
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021
2222021
Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection
G Pang, C Yan, C Shen, A van den Hengel, X Bai
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
2132020
Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection
G Pang, L Cao, L Chen, H Liu
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge …, 2018
2052018
Beyond triplet loss: person re-identification with fine-grained difference-aware pairwise loss
C Yan, G Pang, X Bai, C Liu, X Ning, L Gu, J Zhou
IEEE Transactions on Multimedia 24, 1665-1677, 2021
1822021
Toward deep supervised anomaly detection: Reinforcement learning from partially labeled anomaly data
G Pang, A van den Hengel, C Shen, L Cao
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021
97*2021
Deep one-class classification via interpolated gaussian descriptor
Y Chen, Y Tian, G Pang, G Carneiro
Proceedings of the AAAI Conference on Artificial Intelligence 36 (1), 383-392, 2022
93*2022
Deep weakly-supervised anomaly detection
G Pang, C Shen, H Jin, A van den Hengel
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023
91*2023
Outlier detection in complex categorical data by modelling feature value couplings
G Pang, L Cao, L Chen
Proceedings of the 25th International Joint Conference on Artificial …, 2016
702016
Explainable deep few-shot anomaly detection with deviation networks
G Pang, C Ding, C Shen, A Hengel
arXiv preprint arXiv:2108.00462, 2021
622021
LeSiNN: Detecting anomalies by identifying least similar nearest neighbours
G Pang, KM Ting, D Albrecht
2015 IEEE international conference on data mining workshop (ICDMW), 623-630, 2015
612015
Catching both gray and black swans: Open-set supervised anomaly detection
C Ding, G Pang, C Shen
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
602022
Sparse Modeling-based Sequential Ensemble Learning for Effective Outlier Detection in High-dimensional Numeric Data
G Pang, L Cao, L Chen, D Lian, H Liu
Thirty-Second AAAI Conference on Artificial Intelligence, 2018
602018
Constrained contrastive distribution learning for unsupervised anomaly detection and localisation in medical images
Y Tian, G Pang, F Liu, Y Chen, SH Shin, JW Verjans, R Singh, G Carneiro
Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th …, 2021
592021
Deep isolation forest for anomaly detection
H Xu, G Pang, Y Wang, Y Wang
IEEE Transactions on Knowledge and Data Engineering, 2023
512023
Unsupervised Feature Selection for Outlier Detection by Modelling Hierarchical Value-Feature Couplings
G Pang, L Cao, L Chen, H Liu
2016 IEEE 16th International Conference on Data Mining (ICDM-16), 2016
512016
Deep graph-level anomaly detection by glocal knowledge distillation
R Ma, G Pang, L Chen, A van den Hengel
Proceedings of the Fifteenth ACM International Conference on Web Search and …, 2022
492022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20