Folgen
Zhaojian Li
Zhaojian Li
Red Cedar Distinguished Associate Professor, Michigan State University
Bestätigte E-Mail-Adresse bei egr.msu.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Multi-agent deep reinforcement learning for large-scale traffic signal control
T Chu, J Wang, L Codecà, Z Li
IEEE transactions on intelligent transportation systems 21 (3), 1086-1095, 2019
8472019
Deep learning-based apple detection using a suppression mask R-CNN
P Chu, Z Li, K Lammers, R Lu, X Liu
Pattern Recognition Letters 147, 206-211, 2021
1262021
Robust platoon control in mixed traffic flow based on tube model predictive control
S Feng, Z Song, Z Li, Y Zhang, L Li
IEEE Transactions on Intelligent Vehicles 6 (4), 711-722, 2021
1142021
YOLOWeeds: A novel benchmark of YOLO object detectors for multi-class weed detection in cotton production systems
F Dang, D Chen, Y Lu, Z Li
Computers and Electronics in Agriculture 205, 107655, 2023
1102023
Deep multi-agent reinforcement learning for highway on-ramp merging in mixed traffic
D Chen, MR Hajidavalloo, Z Li, K Chen, Y Wang, L Jiang, Y Wang
IEEE Transactions on Intelligent Transportation Systems 24 (11), 11623-11638, 2023
1092023
Distributed state estimation of sensor-network systems subject to Markovian channel switching with application to a chemical process
X Yin, Z Li, L Zhang, M Han
IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 (6), 864-874, 2016
1012016
Performance evaluation of deep transfer learning on multi-class identification of common weed species in cotton production systems
D Chen, Y Lu, Z Li, S Young
Computers and Electronics in Agriculture 198, 107091, 2022
942022
System design and control of an apple harvesting robot
K Zhang, K Lammers, P Chu, Z Li, R Lu
Mechatronics 79, 102644, 2021
922021
Robust control of networked systems with variable communication capabilities and application to a semi-active suspension system
X Yin, L Zhang, Y Zhu, C Wang, Z Li
IEEE/ASME Transactions on Mechatronics 21 (4), 2097-2107, 2016
892016
Visual-manual distraction detection using driving performance indicators with naturalistic driving data
Z Li, S Bao, IV Kolmanovsky, X Yin
IEEE Transactions on Intelligent Transportation Systems 19 (8), 2528-2535, 2017
872017
Road disturbance estimation and cloud-aided comfort-based route planning
Z Li, IV Kolmanovsky, EM Atkins, J Lu, DP Filev, Y Bai
IEEE transactions on cybernetics 47 (11), 3879-3891, 2016
802016
Road risk modeling and cloud-aided safety-based route planning
Z Li, I Kolmanovsky, E Atkins, J Lu, DP Filev, J Michelini
IEEE transactions on cybernetics 46 (11), 2473-2483, 2015
802015
Infinite-step opacity and K-step opacity of stochastic discrete-event systems
X Yin, Z Li, W Wang, S Li
Automatica 99, 266-274, 2019
762019
Autonomous driving using safe reinforcement learning by incorporating a regret-based human lane-changing decision model
D Chen, L Jiang, Y Wang, Z Li
2020 American Control Conference (ACC), 4355-4361, 2020
742020
Powernet: Multi-agent deep reinforcement learning for scalable powergrid control
D Chen, K Chen, Z Li, T Chu, R Yao, F Qiu, K Lin
IEEE Transactions on Power Systems 37 (2), 1007-1017, 2021
732021
Multi-agent reinforcement learning for cooperative lane changing of connected and autonomous vehicles in mixed traffic
W Zhou, D Chen, J Yan, Z Li, H Yin, W Ge
Autonomous Intelligent Systems 2 (1), 5, 2022
702022
Decentralized fault prognosis of discrete event systems with guaranteed performance bound
X Yin, Z Li
Automatica 69, 375-379, 2016
602016
Safe reinforcement learning: Learning with supervision using a constraint-admissible set
Z Li, U Kalabić, T Chu
2018 Annual American Control Conference (ACC), 6390-6395, 2018
582018
Reliable decentralized fault prognosis of discrete-event systems
X Yin, Z Li
IEEE Transactions on Systems, Man, and Cybernetics: Systems 46 (11), 1598-1603, 2015
572015
Federated learning’s blessing: Fedavg has linear speedup
Z Qu, K Lin, Z Li, J Zhou
ICLR 2021-Workshop on Distributed and Private Machine Learning (DPML), 2021
542021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20