Graph kernels based on tree patterns for molecules P Mahé, JP Vert Machine learning 75 (1), 3-35, 2009 | 285 | 2009 |
Extensions of marginalized graph kernels P Mahé, N Ueda, T Akutsu, JL Perret, JP Vert Proceedings of the twenty-first international conference on Machine learning, 70, 2004 | 247 | 2004 |
Graph kernels for molecular structure− activity relationship analysis with support vector machines P Mahé, N Ueda, T Akutsu, JL Perret, JP Vert Journal of chemical information and modeling 45 (4), 939-951, 2005 | 227 | 2005 |
The pharmacophore kernel for virtual screening with support vector machines P Mahé, L Ralaivola, V Stoven, JP Vert Journal of Chemical Information and Modeling 46 (5), 2003-2014, 2006 | 114 | 2006 |
A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events M Jaillard, L Lima, M Tournoud, P Mahé, A Van Belkum, V Lacroix, ... PLoS genetics 14 (11), e1007758, 2018 | 98 | 2018 |
Automatic identification of mixed bacterial species fingerprints in a MALDI-TOF mass-spectrum P Mahe, M Arsac, S Chatellier, V Monnin, N Perrot, S Mailler, V Girard, ... Bioinformatics 30 (9), 1280-1286, 2014 | 85 | 2014 |
Large-scale machine learning for metagenomics sequence classification K Vervier, P Mahé, M Tournoud, JB Veyrieras, JP Vert Bioinformatics 32 (7), 1023-1032, 2016 | 74 | 2016 |
Method for computing similarity between text spans using factored word sequence kernels N Cancedda, P Mahé US Patent 8,077,984, 2011 | 70 | 2011 |
Digital antimicrobial susceptibility testing using the MilliDrop technology L Jiang, L Boitard, P Broyer, AC Chareire, P Bourne-Branchu, P Mahé, ... European Journal of Clinical Microbiology & Infectious Diseases 35 (3), 415-422, 2016 | 28 | 2016 |
Predicting bacterial resistance from whole-genome sequences using k-mers and stability selection P Mahé, M Tournoud BMC bioinformatics 19 (1), 1-11, 2018 | 26 | 2018 |
Virtual screening with support vector machines and structure kernels P Mahé, JP Vert Combinatorial chemistry & high throughput screening 12 (4), 409-423, 2009 | 18 | 2009 |
Classification of proteomic MS data as Bayesian solution of an inverse problem P Szacherski, JF Giovannelli, L Gerfault, P Mahé, JP Charrier, A Giremus, ... IEEE Access 2, 1248-1262, 2014 | 13 | 2014 |
A large scale evaluation of TBProfiler and Mykrobe for antibiotic resistance prediction in Mycobacterium tuberculosis P Mahé, M El Azami, P Barlas, M Tournoud PeerJ 7, e6857, 2019 | 12 | 2019 |
Benchmark of structured machine learning methods for microbial identification from mass-spectrometry data K Vervier, P Mahé, JB Veyrieras, JP Vert arXiv preprint arXiv:1506.07251, 2015 | 11 | 2015 |
Factored sequence kernels N Cancedda, P Mahé Neurocomputing 72 (7-9), 1407-1413, 2009 | 11 | 2009 |
Kernel design for virtual screening of small molecules with support vector machines P Mahe PhD thesis, Ecole des Mines de Paris, 2006 | 11 | 2006 |
Identification Of Microorganisms By Spectrometry And Structured Classification K Vervier, P Mahe, JB Veyrieras US Patent App. 14/387,777, 2015 | 8 | 2015 |
On learning matrices with orthogonal columns or disjoint supports K Vervier, P Mahé, A d’Aspremont, JB Veyrieras, JP Vert Joint European Conference on Machine Learning and Knowledge Discovery in …, 2014 | 7 | 2014 |
MetaVW: Large-scale machine learning for metagenomics sequence classification K Vervier, P Mahé, JP Vert Data Mining for Systems Biology, 9-20, 2018 | 6 | 2018 |
Three-dimensional characterization of bacterial microcolonies on solid agar-based culture media L Drazek, M Tournoud, F Derepas, M Guicherd, P Mahé, F Pinston, ... Journal of microbiological methods 109, 149-156, 2015 | 4 | 2015 |