Folgen
Yu Feng (冯煜)
Yu Feng (冯煜)
Chair of Cartography and Visual Analytics, Technical University of Munich
Bestätigte E-Mail-Adresse bei tum.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Extraction of pluvial flood relevant volunteered geographic information (VGI) by deep learning from user generated texts and photos
Y Feng, M Sester
ISPRS International Journal of Geo-Information 7 (2), 39, 2018
1062018
Learning cartographic building generalization with deep convolutional neural networks
Y Feng, F Thiemann, M Sester
ISPRS International Journal of Geo-Information 8 (6), 258, 2019
992019
Flood severity mapping from Volunteered Geographic Information by interpreting water level from images containing people: A case study of Hurricane Harvey
Y Feng, C Brenner, M Sester
ISPRS Journal of Photogrammetry and Remote Sensing 169, 301-319, 2020
572020
Building generalization using deep learning
M Sester, Y Feng, F Thiemann
The ISPRS-International Archives of the Photogrammetry, Remote Sensing and …, 2018
492018
A polygon aggregation method with global feature preservation using superpixel segmentation
Y Shen, T Ai, W Li, M Yang, Y Feng
Computers, Environment and Urban Systems 75, 117-131, 2019
352019
Impact‐based forecasting for pluvial floods
V Rözer, A Peche, S Berkhahn, Y Feng, L Fuchs, T Graf, U Haberlandt, ...
Earth's Future 9 (2), 2020EF001851, 2021
32*2021
Extraction and analysis of natural disaster-related VGI from social media: review, opportunities and challenges
Y Feng, X Huang, M Sester
International Journal of Geographical Information Science 36 (7), 1275-1316, 2022
272022
3D feature point extraction from LiDAR data using a neural network
Y Feng, A Schlichting, C Brenner
The International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2016
182016
Determination of building flood risk maps from LiDAR mobile mapping data
Y Feng, Q Xiao, C Brenner, A Peche, J Yang, U Feuerhake, M Sester
Computers, Environment and Urban Systems 93, 2022
162022
Ensembled Convolutional Neural Network Models for Retrieving Flood Relevant Tweets
Y Feng, S Shebotnov, C Brenner, M Sester
Proceedings of the MediaEval 2018 Workshop, Sophia-Antipolis, France, 2018
142018
Unfolding community homophily in US metropolitans via human mobility
X Huang, Y Zhao, S Wang, X Li, D Yang, Y Feng, Y Xu, L Zhu, B Chen
Cities 129, 103929, 2022
102022
Learning visual overlapping image pairs for SfM via CNN fine-tuning with photogrammetric geometry information
Q Hou, R Xia, J Zhang, Y Feng, Z Zhan, X Wang
International Journal of Applied Earth Observation and Geoinformation 116 …, 2023
92023
Real-Time Prediction of Pluvial Floods and Induced Water Contamination in Urban Areas
L Fuchs, T Graf, U Haberlandt, H Kreibich, I Neuweiler, M Sester, ...
14th IWA/IAHR International Conference on Urban Drainage, 620-28, 2017
9*2017
Multi-scale building maps from aerial imagery
Y Feng, C Yang, M Sester
International Archives of the Photogrammetry, Remote Sensing & Spatial …, 2020
82020
Social media as a rainfall indicator
Y Feng, M Sester
20th AGILE Conference on Geographic Information Science. Wageningen …, 2017
52017
GaVe: A Webcam-Based Gaze Vending Interface Using One-Point Calibration
Z Zeng, S Liu, H Cheng, H Liu, Y Li, Y Feng*, FW Siebert
Journal of Eye Movement Research 16 (1), 2023
42023
GeoQAMap-Geographic Question Answering with Maps Leveraging LLM and Open Knowledge Base
Y Feng, L Ding, G Xiao
12th International Conference on Geographic Information Science (GIScience 2023), 2023
42023
Learning a precipitation indicator from traffic speed variation patterns
Y Feng, C Brenner, M Sester
Transportation research procedia 47, 203-210, 2020
42020
Enhancing the resolution of urban digital terrain models using mobile mapping systems
Y Feng, C Brenner, M Sester
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information …, 2018
42018
Integrating 3D city data through knowledge graphs
L Ding, G Xiao, A Pano, M Fumagalli, D Chen, Y Feng, D Calvanese, ...
Geo-spatial Information Science, 1-20, 2024
22024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20