Folgen
Ting Guo (Andy)
Ting Guo (Andy)
Senior Research Fellow, Data Science Institute, University of Technology, Sydney
Bestätigte E-Mail-Adresse bei uts.edu.au
Titel
Zitiert von
Zitiert von
Jahr
CFOND: Consensus factorization for co-clustering networked data
T Guo, S Pan, X Zhu, C Zhang
IEEE Transactions on Knowledge and Data Engineering 31 (4), 706-719, 2018
432018
Discriminative Sample Generation for Deep Imbalanced Learning
Ting Guo, Xingquan Zhu, Yang Wang, Fang Chen
Proceedings of the Twenty-Eighth International Joint Conference on …, 2019
292019
Clustering social audiences in business information networks
Y Zheng, R Hu, S Fung, C Yu, G Long, T Guo, S Pan
Pattern Recognition 100, 107126, 2020
232020
Snoc: streaming network node classification
T Guo, X Zhu, J Pei, C Zhang
2014 IEEE International Conference on Data Mining, 150-159, 2014
152014
Simultaneous urban region function discovery and popularity estimation via an infinite urbanization process model
B Zhang, L Zhang, T Guo, Y Wang, F Chen
Proceedings of the 24th ACM SIGKDD International conference on knowledge …, 2018
132018
Interaction point processes via infinite branching model
P Lin, B Zhang, T Guo, Y Wang, F Chen
Proceedings of the AAAI Conference on Artificial Intelligence 30 (1), 2016
132016
Understanding the roles of sub-graph features for graph classification: an empirical study perspective
T Guo, X Zhu
Proceedings of the 22nd ACM international conference on Information …, 2013
132013
SGCCL: siamese graph contrastive consensus learning for personalized recommendation
B Li, T Guo, X Zhu, Q Li, Y Wang, F Chen
Proceedings of the sixteenth ACM international conference on web search and …, 2023
122023
Combining structured node content and topology information for networked graph clustering
T Guo, J Wu, X Zhu, C Zhang
ACM Transactions on Knowledge Discovery from Data (TKDD) 11 (3), 1-29, 2017
102017
Spatio-temporal contrastive learning enhanced gnns for session-based recommendation
Z Wan, X Liu, B Wang, J Qiu, B Li, T Guo, G Chen, Y Wang
ACM Transactions on Information Systems, 2023
72023
Delay Propagation in Large Railway Networks with Data-Driven Bayesian Modeling
B Li, T Guo, R Li, Y Wang, Y Ou, F Chen
Transportation Research Record, 2021
62021
Adaptive graph co-attention networks for traffic forecasting
B Li, T Guo, Y Wang, AH Gandomi, F Chen
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 263-276, 2021
62021
Water pipe failure prediction: A machine learning approach enhanced by domain knowledge
B Zhang, T Guo, L Zhang, P Lin, Y Wang, J Zhou, F Chen
Human and Machine Learning: Visible, Explainable, Trustworthy and …, 2018
62018
Infinite hidden semi-markov modulated interaction point process
P Lin, T Guo, Y Wang, F Chen
Advances in Neural Information Processing Systems 29, 2016
62016
A conditional Bayesian delay propagation model for large-scale railway traffic networks
Y Zhang, R Li, T Guo, Z Li, Y Wang, F Chen
Australasian Transport Research Forum, ATRF 2019-Proceedings, 2019
52019
Reverse twin plant for efficient diagnosability testing and optimizing
B Li, T Guo, X Zhu, Z Li
Engineering Applications of Artificial Intelligence 38, 131-137, 2015
42015
Graph hashing and factorization for fast graph stream classification
T Guo, L Chi, X Zhu
Proceedings of the 22nd ACM international conference on Information …, 2013
42013
Linking complex urban systems: Insights from cross-domain urban data analysis
L Zhang, B Zhang, T Guo, F Chen, P Runcie, B Cameron, R Rooney
Open Cities| Open Data: Collaborative Cities in the Information Era, 221-239, 2020
32020
Geometric object 3d reconstruction from single line drawing image with bottom-up and top-down classification and sketch generation
T Guo, Y Wang, Y Zhou, Z He, Z Tang
2017 14th IAPR International Conference on Document Analysis and Recognition …, 2017
32017
A two-stage self-adaptive model for passenger flow prediction on schedule-based railway system
B Li, T Guo, R Li, Y Wang, AH Gandomi, F Chen
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 147-160, 2022
22022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20