Folgen
Ditsuhi Iskandaryan
Titel
Zitiert von
Zitiert von
Jahr
Air quality prediction in smart cities using machine learning technologies based on sensor data: a review
D Iskandaryan, F Ramos, S Trilles
Applied Sciences 10 (7), 2401, 2020
1582020
Graph neural network for air quality prediction: A case study in madrid
D Iskandaryan, F Ramos, S Trilles
IEEE Access 11, 2729-2742, 2023
272023
Anomaly detection based on artificial intelligence of things: A systematic literature mapping
S Trilles, SS Hammad, D Iskandaryan
Internet of Things, 101063, 2024
212024
Bidirectional convolutional LSTM for the prediction of nitrogen dioxide in the city of Madrid
D Iskandaryan, F Ramos, S Trilles
PloS one 17 (6), e0269295, 2022
182022
An unsupervised TinyML approach applied to the detection of urban noise anomalies under the smart cities environment
SS Hammad, D Iskandaryan, S Trilles
Internet of Things 23, 100848, 2023
162023
The effect of weather in soccer results: an approach using machine learning techniques
D Iskandaryan, F Ramos, DA Palinggi, S Trilles
Applied Sciences 10 (19), 6750, 2020
132020
Features exploration from datasets vision in air quality prediction domain
D Iskandaryan, F Ramos, S Trilles
Atmosphere 12 (3), 312, 2021
62021
Reconstructing secondary data based on air quality, meteorological and traffic data considering spatiotemporal components
D Iskandaryan, F Ramos, S Trilles
Data in Brief 47, 108957, 2023
52023
Comparison of nitrogen dioxide predictions during a pandemic and non-pandemic scenario in the city of Madrid using a convolutional LSTM network
D Iskandaryan, F Ramos, S Trilles
International Journal Of Computational Intelligence And Applications 21 (02 …, 2022
52022
Exploratory analysis and feature selection for the prediction of nitrogen dioxide
D Iskandaryan, S Di Sabatino, F Ramos, S Trilles
AGILE: GIScience Series 3, 6, 2022
42022
A set of deep learning algorithms for air quality prediction applications
D Iskandaryan, F Ramos, S Trilles
Software Impacts 17, 100562, 2023
22023
Spatiotemporal prediction of nitrogen dioxide based on graph neural networks
D Iskandaryan, F Ramos, S Trilles
Environmental Informatics, 111-128, 2022
22022
Application of deep learning and machine learning in air quality modeling
D Iskandaryan, F Ramos, S Trilles
Current Trends and Advances in Computer-Aided Intelligent Environmental Data …, 2022
22022
Visualization and visual analytics of geospatial data for psychological treatment
D Iskandaryan
Universitat Jaume I, 2018
12018
Open data and disaster management
D Iskandaryan
12017
Study and Prediction of Air Quality in Smart Cities through Machine Learning Techniques Considering Spatiotemporal Components
D Iskandaryan
Universitat Jaume I, 2023
2023
Data Visualisation For Teachers: How To Read, Interpret And Show Data Correctly
JF Ramos, D Iskandaryan, I Koribska
International Academy of Technology, Education and Development (IATED), 2022
2022
Dataset for prediction of Nitrogen Dioxide in Madrid city
D Iskandaryan, F Ramos, S Trilles
2021
IMPROVING TEACHERS VISUAL PRESENTATIONS WITH SIMPLICITY, CLARITY AND BREVITY
F Ramos, D Iskandaryan, A Gomez-Cambronero
EDULEARN19 Proceedings, 6218-6218, 2019
2019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–19