Niclas Ståhl
Niclas Ståhl
Bestätigte E-Mail-Adresse bei his.se
Titel
Zitiert von
Zitiert von
Jahr
Deep Reinforcement Learning for Multiparameter Optimization in de novo Drug Design
N Ståhl, G Falkman, A Karlsson, G Mathiason, J Bostrom
Journal of chemical information and modeling 59 (7), 3166-3176, 2019
372019
Machine learning: a concise overview
D Duarte, N Ståhl
Data Science in Practice, 27-58, 2019
102019
Using recurrent neural networks with attention for detecting problematic slab shapes in steel rolling
N Ståhl, G Mathiason, G Falkman, A Karlsson
Applied Mathematical Modelling 70, 365-377, 2019
82019
Deep convolutional neural networks for the prediction of molecular properties: challenges and opportunities connected to the data
N Ståhl, G Falkman, A Karlsson, G Mathiason, J Boström
Journal of integrative bioinformatics 16 (1), 2018
52018
Evaluation of Uncertainty Quantification in Deep Learning
N Ståhl, G Falkman, A Karlsson, G Mathiason
International Conference on Information Processing and Management of …, 2020
42020
Using Machine Learning for Robust Target Prediction in a Basic Oxygen Furnace System
J Bae, Y Li, N Ståhl, G Mathiason, N Kojola
Metallurgical and materials transactions. B, process metallurgy and …, 2020
42020
A Self-Organizing Ensemble of Deep Neural Networks for the Classification of Data from Complex Processes
N Ståhl, G Falkman, G Mathiason, A Karlsson
International Conference on Information Processing and Management of …, 2018
32018
The Effect of Sexual Selection on Cline Patterns in Biological Traits
N Ståhl
12016
Using Reinforcement Learning for Generating Polynomial Models to Explain Complex Data
N Ståhl, G Mathiason, D Alcacoas
SN Computer Science 2 (2), 1-11, 2021
2021
Understanding Robust Target Prediction in Basic Oxygen Furnace
J Bae, G Mathiason, Y Li, N Kojola, N Ståhl
2021 The 2nd International Conference on Industrial Engineering and …, 2021
2021
Complex data analysis
J Bae, A Karlsson, J Mellin, N Ståhl, V Torra
Data Science in Practice, 157-169, 2019
2019
Improving the Use of Deep Convolutional Neural Networks for the Prediction of Molecular Properties
N Ståhl, G Falkman, A Karlsson, G Mathiason, J Boström
International Conference on Practical Applications of Computational Biology …, 2018
2018
Challenges and opportunities of analysing complex data using deep learning
N Ståhl
2017
Formalisering av Algoritmer och Matematiska Bevis En formalisering av Toom-Cook algoritmen i Coq med SSReflect
J Andersson, Å Lideström, D Oom, A Sjöberg, N Ståhl
2014
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–14