Folgen
Yongkai Liu
Yongkai Liu
Bestätigte E-Mail-Adresse bei stanford.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
ME‐Net: multi‐encoder net framework for brain tumor segmentation
W Zhang, G Yang, H Huang, W Yang, X Xu, Y Liu, X Lai
International Journal of Imaging Systems and Technology 31 (4), 1834-1848, 2021
1132021
Automatic Prostate Zonal Segmentation Using Fully Convolutional Network with Feature Pyramid Attention
Y Liu, G Yang, SA Mirak, M Hosseiny, A Azadikhah, X Zhong, RE Reiter, ...
IEEE access 7, 163626 - 163632, 2019
1022019
Exploring uncertainty measures in Bayesian deep attentive neural networks for prostate zonal segmentation
Y Liu, G Yang, M Hosseiny, A Azadikhah, SA Mirak, Q Miao, SS Raman, ...
Ieee Access 8, 151817-151828, 2020
862020
3D PBV-Net: an automated prostate MRI data segmentation method
Y Jin, G Yang, Y Fang, R Li, X Xu, Y Liu, X Lai
Computers in biology and medicine 128, 104160, 2021
852021
Multiparametric MRI-based radiomics model to predict pelvic lymph node invasion for patients with prostate cancer
H Zheng, Q Miao, Y Liu, SA Mirak, M Hosseiny, F Scalzo, SS Raman, ...
European radiology 32 (8), 5688-5699, 2022
252022
Textured-based deep learning in prostate cancer classification with 3t multiparametric MRI: comparison with PI-RADS-based classification
Y Liu, H Zheng, Z Liang, Q Miao, WG Brisbane, LS Marks, SS Raman, ...
Diagnostics 11 (10), 1785, 2021
222021
Functional outcome prediction in acute ischemic stroke using a fused imaging and clinical deep learning model
Y Liu, Y Yu, J Ouyang, B Jiang, G Yang, S Ostmeier, M Wintermark, ...
Stroke 54 (9), 2316-2327, 2023
122023
Integrative machine learning prediction of prostate biopsy results from negative multiparametric MRI
H Zheng, Q Miao, Y Liu, SS Raman, F Scalzo, K Sung
Journal of Magnetic Resonance Imaging 55 (1), 100-110, 2022
102022
Deep learning enables prostate MRI segmentation: a large cohort evaluation with inter-rater variability analysis
Y Liu, Q Miao, C Surawech, H Zheng, D Nguyen, G Yang, SS Raman, ...
Frontiers in Oncology 11, 801876, 2021
92021
Evaluation of Spatial Attentive Deep Learning for Automatic Placental Segmentation on Longitudinal MRI
Y Liu, F Zabihollahy, R Yan, B Lee, C Janzen, SU Devaskar, K Sung
Journal of Magnetic Resonance Imaging, 2022
72022
Haustral loop extraction for CT colonography using geodesics
Y Liu, C Duan, J Liang, J Hu, H Lu, M Luo
International journal of computer assisted radiology and surgery 12, 379-388, 2017
62017
Random expert sampling for deep learning segmentation of acute ischemic stroke on non-contrast CT
S Ostmeier, B Axelrod, Y Liu, Y Yu, B Jiang, N Yuen, B Pulli, ...
Journal of NeuroInterventional Surgery, 2024
42024
Undersampling artifact reduction for free-breathing 3D stack-of-radial MRI based on a deep adversarial learning network
C Gao, V Ghodrati, SF Shih, HH Wu, Y Liu, MD Nickel, T Vahle, B Dale, ...
Magnetic resonance imaging 95, 70-79, 2023
22023
Non-inferiority of deep learning ischemic stroke segmentation on non-contrast CT within 16-hours compared to expert neuroradiologists
S Ostmeier, B Axelrod, BFJ Verhaaren, S Christensen, A Mahammedi, ...
Scientific Reports 13 (1), 16153, 2023
12023
A Clinical and Imaging Fused Deep Learning Model Matches Expert Clinician Prediction of 90-Day Stroke Outcomes
Y Liu, P Shah, Y Yu, J Horsey, J Ouyang, B Jiang, G Yang, JJ Heit, ...
American Journal of Neuroradiology 45 (4), 406-411, 2024
2024
Absolute Breast Imaging Review: Multimodality Cases for the Core Exam
L Chow, B Li
Springer Nature, 2022
2022
Advancing Segmentation and Classification Methods in Magnetic Resonance Imaging via Artificial Intelligence
Y Liu
University of California, Los Angeles, 2022
2022
Deep Learning-enabled Prostate Segmentation: Large Cohort Evaluation with Inter-Reader Variability Analysis
Y Liu, M Qi, C Surawech, H Zheng, D Nguyen, G Yang, S Raman, K Sung
Texture-Based Deep Learning for Prostate Cancer Classification with Multiparametric MRI
Y Liu, H Zheng, Z Liang, M Qi, W Brisbane, L Marks, S Raman, R Reiter, ...
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–19