Liang-Chieh (Jay) Chen
Liang-Chieh (Jay) Chen
Research Scientist, Google LA
Bestätigte E-Mail-Adresse bei cs.ucla.edu - Startseite
TitelZitiert vonJahr
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
LC Chen, G Papandreou, I Kokkinos, K Murphy, AL Yuille
IEEE transactions on pattern analysis and machine intelligence 40 (4), 834-848, 2018
30862018
Semantic image segmentation with deep convolutional nets and fully connected crfs
LC Chen, G Papandreou, I Kokkinos, K Murphy, AL Yuille
arXiv preprint arXiv:1412.7062, 2014
18752014
Mobilenetv2: Inverted residuals and linear bottlenecks
M Sandler, A Howard, M Zhu, A Zhmoginov, LC Chen
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
763*2018
Rethinking atrous convolution for semantic image segmentation
LC Chen, G Papandreou, F Schroff, H Adam
arXiv preprint arXiv:1706.05587, 2017
7022017
Encoder-decoder with atrous separable convolution for semantic image segmentation
LC Chen, Y Zhu, G Papandreou, F Schroff, H Adam
Proceedings of the European conference on computer vision (ECCV), 801-818, 2018
6552018
Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation
G Papandreou, LC Chen, KP Murphy, AL Yuille
Proceedings of the IEEE international conference on computer vision, 1742-1750, 2015
5482015
Attention to scale: Scale-aware semantic image segmentation
LC Chen, Y Yang, J Wang, W Xu, AL Yuille
Proceedings of the IEEE conference on computer vision and pattern …, 2016
4302016
Learning deep structured models
LC Chen, A Schwing, A Yuille, R Urtasun
International Conference on Machine Learning, 1785-1794, 2015
1752015
Semantic image segmentation with task-specific edge detection using cnns and a discriminatively trained domain transform
LC Chen, JT Barron, G Papandreou, K Murphy, AL Yuille
Proceedings of the IEEE conference on computer vision and pattern …, 2016
1572016
Abc-cnn: An attention based convolutional neural network for visual question answering
K Chen, J Wang, LC Chen, H Gao, W Xu, R Nevatia
arXiv preprint arXiv:1511.05960, 2015
1542015
Zoom better to see clearer: Human and object parsing with hierarchical auto-zoom net
F Xia, P Wang, LC Chen, AL Yuille
European Conference on Computer Vision, 648-663, 2016
86*2016
Masklab: Instance segmentation by refining object detection with semantic and direction features
LC Chen, A Hermans, G Papandreou, F Schroff, P Wang, H Adam
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
592018
Beat the mturkers: Automatic image labeling from weak 3d supervision
LC Chen, S Fidler, AL Yuille, R Urtasun
Proceedings of the IEEE conference on computer vision and pattern …, 2014
562014
Searching for efficient multi-scale architectures for dense image prediction
LC Chen, M Collins, Y Zhu, G Papandreou, B Zoph, F Schroff, H Adam, ...
Advances in Neural Information Processing Systems, 8699-8710, 2018
532018
Personlab: Person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model
G Papandreou, T Zhu, LC Chen, S Gidaris, J Tompson, K Murphy
Proceedings of the European Conference on Computer Vision (ECCV), 269-286, 2018
372018
Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation
C Liu, LC Chen, F Schroff, H Adam, W Hua, AL Yuille, L Fei-Fei
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2019
352019
The devil is in the decoder
Z Wojna, V Ferrari, S Guadarrama, N Silberman, LC Chen, A Fathi, ...
arXiv preprint arXiv:1707.05847, 2017
292017
Learning a dictionary of shape epitomes with applications to image labeling
LC Chen, G Papandreou, AL Yuille
Computer Vision (ICCV), 2013 IEEE International Conference on, 337-344, 2013
152013
Modeling image patches with a generic dictionary of mini-epitomes
G Papandreou, LC Chen, AL Yuille
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2014
142014
Multi-mode encoding for data compression
LC Chen, X Yang
US Patent 8,044,829, 2011
122011
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20