Folgen
Alykhan Tejani
Titel
Zitiert von
Zitiert von
Jahr
Pytorch: An imperative style, high-performance deep learning library
A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ...
Advances in neural information processing systems 32, 2019
219532019
Photo-realistic single image super-resolution using a generative adversarial network
C Ledig, L Theis, F Huszár, J Caballero, A Cunningham, A Acosta, ...
Proceedings of the IEEE conference on computer vision and pattern …, 2017
92192017
Advances in neural information processing systems 32
A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ...
Curran Associates, Inc, 8024-8035, 2019
5162019
Latent regression forest: Structured estimation of 3d articulated hand posture
D Tang, H Jin Chang, A Tejani, TK Kim
Proceedings of the IEEE conference on computer vision and pattern …, 2014
4252014
Proceedings of the IEEE conference on computer vision and pattern recognition
C Ledig, L Theis, F Huszár, J Caballero, A Cunningham, A Acosta, ...
Photo-realistic single image super-resolution using a generative adversarial …, 2017
2942017
Latent-class hough forests for 3d object detection and pose estimation
A Tejani, D Tang, R Kouskouridas, TK Kim
European Conference on Computer Vision, 462-477, 2014
2932014
Faster gaze prediction with dense networks and fisher pruning
L Theis, I Korshunova, A Tejani, F Huszár
arXiv preprint arXiv:1801.05787, 2018
1562018
Is the deconvolution layer the same as a convolutional layer?
W Shi, J Caballero, L Theis, F Huszar, A Aitken, C Ledig, Z Wang
arXiv preprint arXiv:1609.07009, 2016
1442016
Pytorch: An imperative style, high-performance deep learning library. arXiv 2019
A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ...
arXiv preprint arXiv:1912.01703, 1912
981912
Latent-class hough forests for 6 DoF object pose estimation
A Tejani, R Kouskouridas, A Doumanoglou, D Tang, TK Kim
IEEE transactions on pattern analysis and machine intelligence 40 (1), 119-132, 2017
552017
Latent regression forest: structured estimation of 3d hand poses
D Tang, HJ Chang, A Tejani, TK Kim
IEEE Transactions on Pattern Analysis and Machine Intelligence 39 (7), 1374-1387, 2016
422016
Addressing delayed feedback for continuous training with neural networks in CTR prediction
SI Ktena, A Tejani, L Theis, PK Myana, D Dilipkumar, F Huszár, S Yoo, ...
Proceedings of the 13th ACM conference on recommender systems, 187-195, 2019
362019
Deep bayesian bandits: Exploring in online personalized recommendations
D Guo, SI Ktena, PK Myana, F Huszar, W Shi, A Tejani, M Kneier, S Das
Fourteenth ACM Conference on Recommender Systems, 456-461, 2020
202020
High-level library to help with training neural networks in pytorch
V Fomin, J Anmol, S Desroziers, J Kriss, A Tejani
192020
Photo-realistic single image super-resolution using a generative adversarial network. arXiv e-prints
C Ledig, L Theis, F Huszar, J Caballero, A Cunningham, A Acosta, ...
arXiv preprint arXiv:1609.04802 36, 2016
162016
Model size reduction using frequency based double hashing for recommender systems
C Zhang, Y Liu, Y Xie, SI Ktena, A Tejani, A Gupta, PK Myana, ...
Fourteenth ACM Conference on Recommender Systems, 521-526, 2020
152020
Privacy-Preserving Recommender Systems Challenge on Twitter's Home Timeline
L Belli, SI Ktena, A Tejani, A Lung-Yut-Fon, F Portman, X Zhu, Y Xie, ...
142020
RecSys 2020 challenge workshop: engagement prediction on Twitter’s home timeline
VW Anelli, A Delić, G Sottocornola, J Smith, N Andrade, L Belli, ...
Fourteenth ACM Conference on Recommender Systems, 623-627, 2020
112020
RecSys 2021 Challenge Workshop: Fairness-aware engagement prediction at scale on Twitter’s Home Timeline
VW Anelli, S Kalloori, B Ferwerda, L Belli, A Tejani, F Portman, ...
Fifteenth ACM Conference on Recommender Systems, 819-824, 2021
102021
Privacy-Aware Recommender Systems Challenge on Twitter's Home Timeline
L Belli, SI Ktena, A Tejani, A Lung-Yut-Fon, F Portman, X Zhu, Y Xie, ...
arXiv preprint arXiv:2004.13715, 2020
102020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20