Folgen
Shixiang Shane Gu
Shixiang Shane Gu
OpenAI
Bestätigte E-Mail-Adresse bei openai.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Categorical reparameterization with gumbel-softmax
E Jang, S Gu, B Poole
arXiv preprint arXiv:1611.01144, 2016
39952016
Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates
S Gu, E Holly, T Lillicrap, S Levine
2017 IEEE international conference on robotics and automation (ICRA), 3389-3396, 2017
14842017
Continuous deep q-learning with model-based acceleration
S Gu, T Lillicrap, I Sutskever, S Levine
International conference on machine learning, 2829-2838, 2016
10702016
Continuous deep q-learning with model-based acceleration
S Gu, T Lillicrap, I Sutskever, S Levine
International conference on machine learning, 2829-2838, 2016
10702016
Towards deep neural network architectures robust to adversarial examples
S Gu, L Rigazio
arXiv preprint arXiv:1412.5068, 2014
8552014
Data-efficient hierarchical reinforcement learning
O Nachum, SS Gu, H Lee, S Levine
Advances in neural information processing systems 31, 2018
6532018
Q-prop: Sample-efficient policy gradient with an off-policy critic
S Gu, T Lillicrap, Z Ghahramani, RE Turner, S Levine
arXiv preprint arXiv:1611.02247, 2016
3502016
Sequence tutor: Conservative fine-tuning of sequence generation models with kl-control
N Jaques, S Gu, D Bahdanau, JM Hernández-Lobato, RE Turner, D Eck
International Conference on Machine Learning, 1645-1654, 2017
269*2017
Dynamics-aware unsupervised discovery of skills
A Sharma, S Gu, S Levine, V Kumar, K Hausman
arXiv preprint arXiv:1907.01657, 2019
2592019
Human-centric dialog training via offline reinforcement learning
N Jaques, JH Shen, A Ghandeharioun, C Ferguson, A Lapedriza, ...
arXiv preprint arXiv:2010.05848, 2020
237*2020
Temporal difference models: Model-free deep rl for model-based control
V Pong, S Gu, M Dalal, S Levine
arXiv preprint arXiv:1802.09081, 2018
2332018
A minimalist approach to offline reinforcement learning
S Fujimoto, SS Gu
Advances in neural information processing systems 34, 20132-20145, 2021
2162021
Near-optimal representation learning for hierarchical reinforcement learning
O Nachum, S Gu, H Lee, S Levine
arXiv preprint arXiv:1810.01257, 2018
1682018
Large language models are zero-shot reasoners
T Kojima, SS Gu, M Reid, Y Matsuo, Y Iwasawa
arXiv preprint arXiv:2205.11916, 2022
1662022
A divergence minimization perspective on imitation learning methods
SKS Ghasemipour, R Zemel, S Gu
Conference on Robot Learning, 1259-1277, 2020
1652020
Interpolated policy gradient: Merging on-policy and off-policy gradient estimation for deep reinforcement learning
SS Gu, T Lillicrap, RE Turner, Z Ghahramani, B Schölkopf, S Levine
Advances in neural information processing systems 30, 2017
1622017
Language as an abstraction for hierarchical deep reinforcement learning
Y Jiang, SS Gu, KP Murphy, C Finn
Advances in Neural Information Processing Systems 32, 2019
1412019
Neural adaptive sequential monte carlo
SS Gu, Z Ghahramani, RE Turner
Advances in neural information processing systems 28, 2015
1392015
Neural adaptive sequential monte carlo
SS Gu, Z Ghahramani, RE Turner
Advances in neural information processing systems 28, 2015
1392015
Muprop: Unbiased backpropagation for stochastic neural networks
S Gu, S Levine, I Sutskever, A Mnih
arXiv preprint arXiv:1511.05176, 2015
1382015
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20