Hossein Karshenas
Hossein Karshenas
Assistant Professor, Artificial Intelligence Department University of Isfahan
Bestätigte E-Mail-Adresse bei eng.ui.ac.ir
Titel
Zitiert von
Zitiert von
Jahr
A review on evolutionary algorithms in Bayesian network learning and inference tasks
P Larrañaga, H Karshenas, C Bielza, R Santana
Information Sciences 233, 109-125, 2013
1332013
A review on probabilistic graphical models in evolutionary computation
P Larrañaga, H Karshenas, C Bielza, R Santana
Journal of Heuristics 18 (5), 795-819, 2012
772012
Regularized continuous estimation of distribution algorithms
H Karshenas, R Santana, C Bielza, P Larrañaga
Applied Soft Computing 13 (5), 2412-2432, 2013
342013
Multi-objective optimization with joint probabilistic modeling of objectives and variables
H Karshenas, R Santana, C Bielza, P Larrañaga
Evolutionary Multi-Criterion Optimization, 298-312, 2011
182011
Multi-objective optimization based on joint probabilistic modeling of objectives and variables
H Karshenas, R Santana, C Bielza, P Larrañaga
IEEE Transactions on Evolutionary Computation 18 (4), 519-542, 2014
102014
Combinatorial effects of local structures and scoring metrics in bayesian optimization algorithm
H Karshenas, A Nikanjam, BH Helmi, AT Rahmani
Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary …, 2009
102009
Interval-based ranking in noisy evolutionary multi-objective optimization
H Karshenas, C Bielza, P Larrañaga
Computational Optimization and Applications 61 (2), 517-555, 2015
82015
KNN-based multi-label twin support vector machine with priority of labels
Z Hanifelou, P Adibi, SA Monadjemi, H Karshenas
Neurocomputing 322, 177-186, 2018
72018
Continuous Estimation of Distribution Algorithms Based on Factorized Gaussian Markov Networks
H Karshenas, R Santana, C Bielza, P Larrañaga
Markov Networks in Evolutionary Computation, 157-173, 2012
52012
Regularized model learning in EDAs for continuous and multi-objective optimization
H Karshenas
Technical University of Madrid, 2013
32013
Regularized k-order markov models in EDAs
R Santana, H Karshenas, C Bielza, P Larrañaga
Proceedings of the 13th annual conference on Genetic and evolutionary …, 2011
22011
Single Sample Face Recognition Using Multicross Pattern and Learning Discriminative Binary Features
N Saeidi, H Karshenas, HM Mohammadi
Journal of Applied Security Research 14 (2), 169-190, 2019
12019
Multi-structure problems: Difficult model learning in discrete EDAs
A Nikanjam, H Karshenas
2016 IEEE Congress on Evolutionary Computation (CEC), 3448-3454, 2016
12016
Complexity of model learning in EDAs: multi-structure problems
H Sharifi, A Nikanjam, H Karshenas, N Najimi
Proceedings of the 2014 conference companion on Genetic and evolutionary …, 2014
12014
Quantitative genetics in multi-objective optimization algorithms: from useful insights to effective methods
R Santana, H Karshenas, C Bielza, P Larrañaga
Proceedings of the 13th annual conference companion on Genetic and …, 2011
12011
Model accuracy for hierarchical problems
H Karshenas, A Nikanjam, BH Helmi, AT Rahmani
2009 IEEE International Conference on Intelligent Computing and Intelligent …, 2009
12009
Improving Network Intrusion Detection by Identifying Effective Features using Evolutionary Algorithms based on Support Vector Machine
M Sharifiasn, H Karshenas, S Sharifiasn
Computational Intelligence in Electrical Engineering 11 (1), 29-42, 2020
2020
PCB Defect Detection Using Denoising Convolutional Autoencoders
S Khalilian, Y Hallaj, A Balouchestani, H Karshenas, A Mohammadi
2020 International Conference on Machine Vision and Image Processing (MVIP), 1-5, 2020
2020
Subspace Learning Augmented with Class Conditional Probability Estimation Based on SVM Classifier in Domain Adaptation
E Hatefi, H Karshenas, P Adibi
2020 25th International Computer Conference, Computer Society of Iran (CSICC …, 2020
2020
Learning multi-objective binary features for image representation
N Saeidi, H Karshenas, HM Mohammadi
2017 7th International Conference on Computer and Knowledge Engineering …, 2017
2017
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20