Tensorflow: Large-scale machine learning on heterogeneous distributed systems M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ...
arXiv preprint arXiv:1603.04467, 2016
24145 2016 Generating sentences from a continuous space SR Bowman, L Vilnis, O Vinyals, AM Dai, R Jozefowicz, S Bengio
arXiv preprint arXiv:1511.06349, 2015
2213 2015 An empirical exploration of recurrent network architectures R Jozefowicz, W Zaremba, I Sutskever
2035 2015 Improved variational inference with inverse autoregressive flow DP Kingma, T Salimans, R Jozefowicz, X Chen, I Sutskever, M Welling
Advances in neural information processing systems 29, 2016
1586 2016 Exploring the limits of language modeling R Jozefowicz, O Vinyals, M Schuster, N Shazeer, Y Wu
arXiv preprint arXiv:1602.02410, 2016
1158 2016 Learning dexterous in-hand manipulation OAIM Andrychowicz, B Baker, M Chociej, R Jozefowicz, B McGrew, ...
The International Journal of Robotics Research 39 (1), 3-20, 2020
1132 2020 Dota 2 with large scale deep reinforcement learning C Berner, G Brockman, B Chan, V Cheung, P Dębiak, C Dennison, ...
arXiv preprint arXiv:1912.06680, 2019
1038 2019 Revisiting distributed synchronous SGD J Chen, X Pan, R Monga, S Bengio, R Jozefowicz
arXiv preprint arXiv:1604.00981, 2016
726 2016 TensorFlow: Large-scale machine learning on heterogeneous systems, software available from tensorflow. org (2015) M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ...
URL https://www. tensorflow. org, 2015
603 2015 Learning to generate reviews and discovering sentiment A Radford, R Jozefowicz, I Sutskever
arXiv preprint arXiv:1704.01444, 2017
444 2017 Inferring single-trial neural population dynamics using sequential auto-encoders C Pandarinath, DJ O’Shea, J Collins, R Jozefowicz, SD Stavisky, JC Kao, ...
Nature methods 15 (10), 805-815, 2018
400 2018 Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ...
arXiv preprint arXiv:1603.04467 14, 2016
272 2016 TensorFlow: large-scale machine learning on heterogeneous distributed systems. 2015 M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ...
URL http://download. tensorflow. org/paper/whitepaper2015. pdf, 12, 2015
249 2015 Lfads-latent factor analysis via dynamical systems D Sussillo, R Jozefowicz, LF Abbott, C Pandarinath
arXiv preprint arXiv:1608.06315, 2016
73 2016 Dota 2 with large scale deep reinforcement learning CB OpenAI, G Brockman, B Chan, V Cheung, P Debiak, C Dennison, ...
arXiv preprint arXiv:1912.06680 2, 2019
72 2019 Towards principled unsupervised learning I Sutskever, R Jozefowicz, K Gregor, D Rezende, T Lillicrap, O Vinyals
arXiv preprint arXiv:1511.06440, 2015
62 2015 TensorFlow: Large-scale machine learning on heterogeneous systems. tensorflow. org M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ...
Accessed May 24, 2020, 2015
31 2015 Potential for optimizing the Higgs boson measurement in decays at the LHC including machine learning techniques R Józefowicz, E Richter-Was, Z Was
Physical Review D 94 (9), 093001, 2016
29 2016 i Xiaoqiang Zheng M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ...
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015
26 2015 Martin wa enberg, martin wicke, yuan yu, and xiaoqiang zheng. 2015. tensorflow: Large-scale machine learning on heterogeneous systems.(2015). hp M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ...
tensor ow. org/So ware available from tensor ow. org, 2015
19 2015