Ilias Tagkopoulos
Ilias Tagkopoulos
Professor, Computer Science and Genome Center, University of California, Davis
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
An Arabidopsis gene regulatory network for secondary cell wall synthesis
M Taylor-Teeples, L Lin, M De Lucas, G Turco, TW Toal, A Gaudinier, ...
Nature 517 (7536), 571-575, 2015
Predictive behavior within microbial genetic networks
I Tagkopoulos, YC Liu, S Tavazoie
science 320 (5881), 1313-1317, 2008
Benzalkonium chlorides: uses, regulatory status, and microbial resistance
B Merchel Piovesan Pereira, I Tagkopoulos
Applied and environmental microbiology 85 (13), e00377-19, 2019
From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system
E Gultepe, JP Green, H Nguyen, J Adams, T Albertson, I Tagkopoulos
Journal of the American Medical Informatics Association 21 (2), 315-325, 2014
Evolutionary potential, cross‐stress behavior and the genetic basis of acquired stress resistance in Escherichia coli
M Dragosits, V Mozhayskiy, S Quinones‐Soto, J Park, I Tagkopoulos
Molecular systems biology 9 (1), 643, 2013
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
M Kim, N Rai, V Zorraquino, I Tagkopoulos
Nature communications 7 (1), 13090, 2016
Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis
Y Liang, H Wu, R Lei, RA Chong, Y Wei, X Lu, I Tagkopoulos, SY Kung, ...
Journal of Biological Chemistry 287 (40), 33533-33544, 2012
From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis
A Tsoukalas, T Albertson, I Tagkopoulos
JMIR medical informatics 3 (1), e3445, 2015
An integrative, multi‐scale, genome‐wide model reveals the phenotypic landscape of Escherichia coli
J Carrera, R Estrela, J Luo, N Rai, A Tsoukalas, I Tagkopoulos
Molecular systems biology 10 (7), 735, 2014
Data integration and predictive modeling methods for multi-omics datasets
M Kim, I Tagkopoulos
Molecular omics 14 (1), 8-25, 2018
Application of machine learning in rheumatic disease research
KJ Kim, I Tagkopoulos
The Korean journal of internal medicine 34 (4), 708, 2019
A synthetic biology approach to self-regulatory recombinant protein production in Escherichia coli
M Dragosits, D Nicklas, I Tagkopoulos
Journal of biological engineering 6, 1-10, 2012
Predicting early risk of chronic kidney disease in cats using routine clinical laboratory tests and machine learning
R Bradley, I Tagkopoulos, M Kim, Y Kokkinos, T Panagiotakos, J Kennedy, ...
Journal of veterinary internal medicine 33 (6), 2644-2656, 2019
Biocide-Induced Emergence of Antibiotic Resistance in Escherichia coli
B Merchel Piovesan Pereira, X Wang, I Tagkopoulos
Frontiers in Microbiology 12, 640923, 2021
SBROME: a scalable optimization and module matching framework for automated biosystems design
L Huynh, A Tsoukalas, M Köppe, I Tagkopoulos
ACS synthetic biology 2 (5), 263-273, 2013
Kinetic characterization of 100 glycoside hydrolase mutants enables the discovery of structural features correlated with kinetic constants
DA Carlin, RW Caster, X Wang, SA Betzenderfer, CX Chen, VM Duong, ...
PLoS One 11 (1), e0147596, 2016
The Genetic and Transcriptional Basis of Short and Long Term Adaptation across Multiple Stresses in Escherichia coli
V Zorraquino, M Kim, N Rai, I Tagkopoulos
Molecular Biology and Evolution 34 (3), 707-717, 2017
The computational diet: a review of computational methods across diet, microbiome, and health
A Eetemadi, N Rai, BMP Pereira, M Kim, H Schmitz, I Tagkopoulos
Frontiers in microbiology 11, 393, 2020
Compendium of skin molecular signatures identifies key pathological features associated with fibrosis in systemic sclerosis
SJ Moon, JM Bae, KS Park, I Tagkopoulos, KJ Kim
Annals of the Rheumatic Diseases 78 (6), 817-825, 2019
Compendium of synovial signatures identifies pathologic characteristics for predicting treatment response in rheumatoid arthritis patients
KJ Kim, M Kim, IE Adamopoulos, I Tagkopoulos
Clinical Immunology 202, 1-10, 2019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20