Brain MRI super-resolution using deep 3D convolutional networks CH Pham, A Ducournau, R Fablet, F Rousseau 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017 …, 2017 | 248 | 2017 |
Multiscale brain MRI super-resolution using deep 3D convolutional networks CH Pham, C Tor-Díez, H Meunier, N Bednarek, R Fablet, N Passat, ... Computerized Medical Imaging and Graphics 77, 101647, 2019 | 122 | 2019 |
SegSRGAN: Super-resolution and segmentation using generative adversarial networks—Application to neonatal brain MRI Q Delannoy, CH Pham, C Cazorla, C Tor-Díez, G Dollé, H Meunier, ... Computers in Biology and Medicine 120, 103755, 2020 | 54 | 2020 |
A PCA-like Autoencoder S Ladjal, A Newson, CH Pham arXiv preprint arXiv:1904.01277, 2019 | 41 | 2019 |
Simultaneous super-resolution and segmentation using a generative adversarial network: Application to neonatal brain MRI CH Pham, C Tor-Díez, H Meunier, N Bednarek, R Fablet, N Passat, ... 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019 …, 2019 | 13 | 2019 |
PCA-AE: Principal Component Analysis Autoencoder for Organising the Latent Space of Generative Networks CH Pham, S Ladjal, A Newson Journal of Mathematical Imaging and Vision 64 (5), 569-585, 2022 | 12 | 2022 |
An Approach for Efficient Detection of Cephalometric Landmarks T Le-Tien, H Pham-Chi Procedia Computer Science 37, 293-300, 2014 | 12 | 2014 |
Deep learning for medical image super resolution and segmentation CH Pham Ecole nationale supérieure Mines-Télécom Atlantique, 2018 | 7 | 2018 |
Unsupervised Learning of Disentangled Representation via Auto-Encoding: A Survey I Eddahmani, CH Pham, T Napoléon, I Badoc, JR Fouefack, M El-Bouz Sensors 23 (4), 2362, 2023 | 3 | 2023 |
A DWT-based image watermarking approach using quantization on filtered blocks T Huynh-The, S Lee, PC Hieu, T Le-Tien 2014 International Conference on Advanced Technologies for Communications …, 2014 | 3 | 2014 |
Using the histogram of oriented gradients for detecting cephalometric landmarks T Le-Tien, T Nguyen-Thien, H Pham-Chi, T Vuong-Duc, P Nguyen-Xuan 2013 International Conference on Advanced Technologies for Communications …, 2013 | 2 | 2013 |
Evaluation of cortical segmentation pipelines on clinical neonatal MRI data C Tor-Díez, CH Pham, H Meunier, S Faisan, I Bloch, N Bednarek, ... | 1 | 2017 |
Learning disentangled representation of video for pallet decomposition in industrial warehouses I Eddahmani, CH Pham, T Napoléon, I Badoc, M El-Bouz Pattern Recognition and Tracking XXXIV 12527, 26-33, 2023 | | 2023 |
Réseaux antagonistes génératifs pour la reconstruction super-résolution et la segmentation en IRM Q Delannoy, CH Pham, C Cazorla, C Tor-Díez, G Dollé, H Meunier, ... Extraction et Gestion des Connaissances-Atelier Apprentissage Profond …, 2020 | | 2020 |
Super-résolution et segmentation simultanées d’IRM cérébrales néonatales par réseaux antagonistes génératifs CH Pham, C Tor-Díez, H Meunier, N Bednarek, R Fablet, N Passat, ... Congrès National d’Imagerie du Vivant (CNIV), 2019 | | 2019 |
Apprentisage profond pour la super-résolution et la segmentation d'images médicales CH Pham Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018 | | 2018 |
Les nouveautés de HAL v3. 0 de A à Z (14/10/2014) Q Delannoy, CH Pham, C Cazorla, C Tor-Díez, G Dollé | | |