Carlos Guestrin
Carlos Guestrin
Amazon Professor of Machine Learning, University of Washington
Bestätigte E-Mail-Adresse bei cs.washington.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Xgboost: A scalable tree boosting system
T Chen, C Guestrin
Proceedings of the 22nd acm sigkdd international conference on knowledge …, 2016
94702016
" Why should i trust you?" Explaining the predictions of any classifier
MT Ribeiro, S Singh, C Guestrin
Proceedings of the 22nd ACM SIGKDD international conference on knowledge …, 2016
48212016
Cost-effective outbreak detection in networks
J Leskovec, A Krause, C Guestrin, C Faloutsos, J VanBriesen, N Glance
Proceedings of the 13th ACM SIGKDD international conference on Knowledge …, 2007
23632007
Distributed graphlab: A framework for machine learning in the cloud
Y Low, J Gonzalez, A Kyrola, D Bickson, C Guestrin, JM Hellerstein
arXiv preprint arXiv:1204.6078, 2012
20632012
Powergraph: Distributed graph-parallel computation on natural graphs
JE Gonzalez, Y Low, H Gu, D Bickson, C Guestrin
10th {USENIX} Symposium on Operating Systems Design and Implementation …, 2012
18202012
Max-margin Markov networks
BTCGD Koller
Advances in neural information processing systems 16, 25, 2004
17322004
Model-driven data acquisition in sensor networks
A Deshpande, C Guestrin, SR Madden, JM Hellerstein, W Hong
Proceedings of the Thirtieth international conference on Very large data …, 2004
14952004
Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies.
A Krause, A Singh, C Guestrin
Journal of Machine Learning Research 9 (2), 2008
14352008
Graphchi: Large-scale graph computation on just a {PC}
A Kyrola, G Blelloch, C Guestrin
10th {USENIX} Symposium on Operating Systems Design and Implementation …, 2012
11282012
Graphlab: A new framework for parallel machine learning
Y Low, JE Gonzalez, A Kyrola, D Bickson, CE Guestrin, J Hellerstein
arXiv preprint arXiv:1408.2041, 2014
8882014
Learning structured prediction models: A large margin approach
B Taskar, V Chatalbashev, D Koller, C Guestrin
Proceedings of the 22nd international conference on Machine learning, 896-903, 2005
6232005
Distributed regression: an efficient framework for modeling sensor network data
C Guestrin, P Bodik, R Thibaux, M Paskin, S Madden
Proceedings of the 3rd international symposium on Information processing in …, 2004
5582004
Efficient solution algorithms for factored MDPs
C Guestrin, D Koller, R Parr, S Venkataraman
Journal of Artificial Intelligence Research 19, 399-468, 2003
5552003
Anchors: High-precision model-agnostic explanations
MT Ribeiro, S Singh, C Guestrin
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
5512018
Near-optimal sensor placements: Maximizing information while minimizing communication cost
A Krause, C Guestrin, A Gupta, J Kleinberg
Proceedings of the 5th international conference on Information processing in …, 2006
5352006
The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms
A Ostfeld, JG Uber, E Salomons, JW Berry, WE Hart, CA Phillips, ...
Journal of Water Resources Planning and Management 134 (6), 556-568, 2008
5322008
Multiagent Planning with Factored MDPs.
C Guestrin, D Koller, R Parr
NIPS 1, 1523-1530, 2001
5172001
Near-optimal sensor placements in gaussian processes
C Guestrin, A Krause, AP Singh
Proceedings of the 22nd international conference on Machine learning, 265-272, 2005
4952005
Stochastic gradient hamiltonian monte carlo
T Chen, E Fox, C Guestrin
International conference on machine learning, 1683-1691, 2014
4892014
Near-optimal nonmyopic value of information in graphical models
A Krause, CE Guestrin
arXiv preprint arXiv:1207.1394, 2012
4612012
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20