Copulas, diagonals, and tail dependence F Durante, J Fernández-Sánchez, R Pappadà Fuzzy Sets and Systems, Special issue on Aggregation functions at AGOP2013 …, 2015 | 42 | 2015 |
Clustering of financial time series in risky scenarios F Durante, R Pappadà, N Torelli Advances in Data Analysis and Classification 8 (4), 359-376, 2013 | 38 | 2013 |
Clustering of time series via non-parametric tail dependence estimation. F Durante, R Pappadà, N Torelli Statistical Papers 56 (3), 701--721, 2014 | 29 | 2014 |
Quantification of the environmental structural risk with spoiling ties: is randomization worthwhile? R Pappadà, F Durante, G Salvadori Stochastic Environmental Research and Risk Assessment 31 (10), 2483-2497, 2017 | 24 | 2017 |
Spin-off Extreme Value and Archimedean copulas for estimating the bivariate structural risk R Pappadà, E Perrone, F Durante, G Salvadori Stochastic Environmental Research and Risk Assessment 30 (1), 327-342, 2016 | 12 | 2016 |
Relabelling in Bayesian mixture models by pivotal units L Egidi, R Pappada, F Pauli, N Torelli Statistics and Computing 28 (4), 957-969, 2018 | 10 | 2018 |
Clustering of concurrent flood risks via Hazard Scenarios R Pappadà, F Durante, G Salvadori, C De Michele Spatial Statistics 23, 124-142, 2018 | 9 | 2018 |
Copula–based clustering methods FML Di Lascio, F Durante, R Pappada Copulas and Dependence Models with Applications, 49-67, 2017 | 9 | 2017 |
Cluster analysis of time series via Kendall distribution. F Durante, R Pappadà Strengthening Links Between Data Analysis and Soft Computing, Advances in …, 2015 | 6 | 2015 |
A portfolio diversification strategy via tail dependence clustering H Wang, R Pappadà, F Durante, E Foscolo Soft Methods for Data Science 456, 511-518, 2017 | 4 | 2017 |
Maxima Units Search (MUS) algorithm: methodology and applications L Egidi, R Pappadà, N Torelli, F Pauli Studies in Theoretical and Applied Statistics, 2018 | 3 | 2018 |
A Graphical Tool for Copula Selection Based on Tail Dependence R Pappadà, F Durante, N Torelli Classification,(Big) Data Analysis and Statistical Learning, 211-218, 2018 | 2 | 2018 |
Clustering of financial time series in extreme scenarios F Durante, R Pappadà Atti della XLVI Riunione Scienti ca della Societ a Italiana di Statistica …, 2012 | 2 | 2012 |
pivmet: Pivotal methods for Bayesian relabelling and k-means clustering L Egidi, R Pappada, F Pauli, N Torelli | 1 | 2018 |
K-means seeding via MUS algorithm L Egidi, R Pappadà, F Pauli, N Torelli Book of Short Papers SIS 2018, 2018 | 1 | 2018 |
Monitoring of microbial volatile organic compounds in traditional fermented foods: The importance of tailored approaches to optimize VOCs contribute for consumer acceptance V Capozzi, S Makhoul, A Romano, L Cappellin, G Spano, M Scampicchio, ... Fermented Foods: Sources, Consumption and Health Benefits, 1st ed.; Morton …, 0 | 1 | |
Pivotal seeding for K-means based on clustering ensembles L Egidi, R Pappada, F Pauli, N Torelli Smart Statistics for Smart Applications, 849-854, 2019 | | 2019 |
Discrimination in machine learning algorithms R Pappadà, F Pauli Book of Short Papers SIS 2018, 2018 | | 2018 |
A semi–parametric approach in the estimation of the structural risk in environmental applications R Pappadà, E Perrone, F Durante, G Salvadori Proceedings of the GRASPA 2015 Conference, 1-4, 2015 | | 2015 |
A Graphical copula-based tool for detecting tail dependence R Pappada, F Durante, N Torelli CLADAG 2015. 10th Scienti c Meeting of the Classi cation and Data Analysis …, 2015 | | 2015 |