Folgen
Florian Knoll
Titel
Zitiert von
Zitiert von
Jahr
Learning a variational network for reconstruction of accelerated MRI data
K Hammernik, T Klatzer, E Kobler, MP Recht, DK Sodickson, T Pock, ...
Magnetic resonance in medicine 79 (6), 3055-3071, 2018
17562018
fastMRI: An open dataset and benchmarks for accelerated MRI
J Zbontar, F Knoll, A Sriram, T Murrell, Z Huang, MJ Muckley, A Defazio, ...
arXiv preprint arXiv:1811.08839, 2018
8512018
Second order total generalized variation (TGV) for MRI
F Knoll, K Bredies, T Pock, R Stollberger
Magnetic resonance in medicine 65 (2), 480-491, 2011
7002011
fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning
F Knoll, J Zbontar, A Sriram, MJ Muckley, M Bruno, A Defazio, M Parente, ...
Radiology: Artificial Intelligence 2 (1), e190007, 2020
3492020
Deep-learning methods for parallel magnetic resonance imaging reconstruction: A survey of the current approaches, trends, and issues
F Knoll, K Hammernik, C Zhang, S Moeller, T Pock, DK Sodickson, ...
IEEE signal processing magazine 37 (1), 128-140, 2020
326*2020
End-to-end variational networks for accelerated MRI reconstruction
A Sriram, J Zbontar, T Murrell, A Defazio, CL Zitnick, N Yakubova, F Knoll, ...
Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd …, 2020
2952020
Results of the 2020 fastMRI challenge for machine learning MR image reconstruction
MJ Muckley, B Riemenschneider, A Radmanesh, S Kim, G Jeong, J Ko, ...
IEEE transactions on medical imaging 40 (9), 2306-2317, 2021
279*2021
Low rank alternating direction method of multipliers reconstruction for MR fingerprinting
J Assländer, MA Cloos, F Knoll, DK Sodickson, J Hennig, R Lattanzi
Magnetic resonance in medicine 79 (1), 83-96, 2018
2492018
Multiparametric imaging with heterogeneous radiofrequency fields
MA Cloos, F Knoll, T Zhao, KT Block, M Bruno, GC Wiggins, ...
Nature communications 7 (1), 12445, 2016
2462016
Assessment of the generalization of learned image reconstruction and the potential for transfer learning
F Knoll, K Hammernik, E Kobler, T Pock, MP Recht, DK Sodickson
Magnetic resonance in medicine 81 (1), 116-128, 2019
2322019
Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge
F Knoll, T Murrell, A Sriram, N Yakubova, J Zbontar, M Rabbat, A Defazio, ...
Magnetic resonance in medicine 84 (6), 3054-3070, 2020
2072020
Artificial intelligence for MR image reconstruction: an overview for clinicians
DJ Lin, PM Johnson, F Knoll, YW Lui
Journal of Magnetic Resonance Imaging 53 (4), 1015-1028, 2021
1642021
Gibbs ringing in diffusion MRI
J Veraart, E Fieremans, IO Jelescu, F Knoll, DS Novikov
Magnetic resonance in medicine 76 (1), 301-314, 2016
1612016
Total generalized variation in diffusion tensor imaging
T Valkonen, K Bredies, F Knoll
SIAM journal on imaging sciences 6 (1), 487-525, 2013
1402013
Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study
MP Recht, J Zbontar, DK Sodickson, F Knoll, N Yakubova, A Sriram, ...
American Journal of Roentgenology 215 (6), 1421-1429, 2020
1382020
Parallel imaging with nonlinear reconstruction using variational penalties
F Knoll, C Clason, K Bredies, M Uecker, R Stollberger
Magnetic resonance in medicine 67 (1), 34-41, 2012
1342012
Artificial intelligence in musculoskeletal imaging: current status and future directions
S Gyftopoulos, D Lin, F Knoll, AM Doshi, TC Rodrigues, MP Recht
American Journal of Roentgenology 213 (3), 506-513, 2019
1332019
Joint MR-PET reconstruction using a multi-channel image regularizer
F Knoll, M Holler, T Koesters, R Otazo, K Bredies, DK Sodickson
IEEE transactions on medical imaging 36 (1), 1-16, 2016
1322016
gpuNUFFT-an open source GPU library for 3D regridding with direct Matlab interface
F Knoll, A Schwarzl, C Diwoky, DK Sodickson
Proceedings of the 22nd annual meeting of ISMRM, Milan, Italy 4297, 2014
1172014
Adapted random sampling patterns for accelerated MRI
F Knoll, C Clason, C Diwoky, R Stollberger
Magnetic resonance materials in physics, biology and medicine 24, 43-50, 2011
1062011
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20