Follow
Mirco Mutti
Title
Cited by
Cited by
Year
Task-Agnostic Exploration via Policy Gradient of a Non-Parametric State Entropy Estimate
M Mutti, L Pratissoli, M Restelli
AAAI 2021, 2021
75*2021
Configurable Markov Decision Processes
AM Metelli, M Mutti, M Restelli
ICML 2018, 2018
492018
The Importance of Non-Markovianity in Maximum State Entropy Exploration
M Mutti, R De Santi, M Restelli
ICML 2022, 2022
342022
Unsupervised Reinforcement Learning in Multiple Environments
M Mutti, M Mancassola, M Restelli
AAAI 2022, 2022
292022
An Intrinsically-Motivated Approach for Learning Highly Exploring and Fast Mixing Policies
M Mutti, M Restelli
AAAI 2020, 2019
292019
Challenging Common Assumptions in Convex Reinforcement Learning
M Mutti, R De Santi, P De Bartolomeis, M Restelli
NeurIPS 2022, 2022
272022
Provably Efficient Causal Model-Based Reinforcement Learning for Systematic Generalization
M Mutti, R De Santi, E Rossi, JF Calderon, M Bronstein, M Restelli
AAAI 2023, 2022
21*2022
Convex Reinforcement Learning in Finite Trials
M Mutti, R De Santi, P De Bartolomeis, M Restelli
JMLR 24 (250), 1-42, 2023
182023
Persuading Farsighted Receivers in MDPs: the Power of Honesty
M Bernasconi, M Castiglioni, A Marchesi, M Mutti
NeurIPS 2023, 2023
92023
Reward-Free Policy Space Compression for Reinforcement Learning
M Mutti, S Del Col, M Restelli
AISTATS 2022, 2022
72022
A framework for partially observed reward-states in rlhf
C Kausik, M Mutti, A Pacchiano, A Tewari
arXiv e-prints, arXiv: 2402.03282, 2024
42024
Unsupervised Reinforcement Learning via State Entropy Maximization
M Mutti
PhD Thesis, Università di Bologna, 2023
42023
Offline Inverse RL: New Solution Concepts and Provably Efficient Algorithms
F Lazzati, M Mutti, AM Metelli
ICML 2024, 2024
32024
Exploiting Causal Graph Priors with Posterior Sampling for Reinforcement Learning
M Mutti, R De Santi, M Restelli, A Marx, G Ramponi
ICLR 2024, 2024
32024
Test-Time Regret Minimization in Meta Reinforcement Learning
M Mutti, A Tamar
ICML 2024, 2024
22024
A Tale of Sampling and Estimation in Discounted Reinforcement Learning
AM Metelli, M Mutti, M Restelli
AISTATS 2023, 2023
22023
The limits of pure exploration in POMDPs: When the observation entropy is enough
R Zamboni, D Cirino, M Restelli, M Mutti
arXiv preprint arXiv:2406.12795, 2024
12024
How does Inverse RL Scale to Large State Spaces? A Provably Efficient Approach
F Lazzati, M Mutti, AM Metelli
arXiv preprint arXiv:2406.03812, 2024
12024
How to Explore with Belief: State Entropy Maximization in POMDPs
R Zamboni, D Cirino, M Restelli, M Mutti
ICML 2024, 2024
12024
How to Scale Inverse RL to Large State Spaces? A Provably Efficient Approach
F Lazzati, M Mutti, AM Metelli
arXiv e-prints, arXiv: 2406.03812, 2024
12024
The system can't perform the operation now. Try again later.
Articles 1–20