Martin Trapp
Zitiert von
Zitiert von
Random sum-product networks: A simple and effective approach to probabilistic deep learning
R Peharz, A Vergari, K Stelzner, A Molina, X Shao, M Trapp, K Kersting, ...
Uncertainty in Artificial Intelligence, 334-344, 2020
Einsum networks: Fast and scalable learning of tractable probabilistic circuits
R Peharz, S Lang, A Vergari, K Stelzner, A Molina, M Trapp, ...
International Conference on Machine Learning, 7563-7574, 2020
One million posts: A data set of german online discussions
D Schabus, M Skowron, M Trapp
Proceedings of the 40th International ACM SIGIR Conference on Research and …, 2017
Bayesian learning of sum-product networks
M Trapp, R Peharz, H Ge, F Pernkopf, Z Ghahramani
Advances in Neural Information Processing Systems (NeurIPS), 2019
Deep Structured Mixtures of Gaussian Processes
M Trapp, R Peharz, F Pernkopf, CE Rasmussen
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Uncertainty-guided source-free domain adaptation
S Roy, M Trapp, A Pilzer, J Kannala, N Sebe, E Ricci, A Solin
European Conference on Computer Vision, 537-555, 2022
AdvancedHMC. jl: A robust, modular and efficient implementation of advanced HMC algorithms
K Xu, H Ge, W Tebbutt, M Tarek, M Trapp, Z Ghahramani
Symposium on Advances in Approximate Bayesian Inference, 1-10, 2020
Safe Semi-Supervised Learning of Sum-Product Networks
M Trapp, T Madl, R Peharz, F Pernkopf, R Trappl
Uncertainty in Artificial Intelligence (UAI), 2017
Periodic activation functions induce stationarity
L Meronen, M Trapp, A Solin
Advances in Neural Information Processing Systems 34, 1673-1685, 2021
Automatic identification of character types from film dialogs
M Skowron, M Trapp, S Payr, R Trappl
Applied Artificial Intelligence 30 (10), 942-973, 2016
Structure inference in sum-product networks using infinite sum-product trees
M Trapp, R Peharz, M Skowron, T Madl, F Pernkopf, R Trappl
NIPS Workshop on Practical Bayesian Nonparametrics, 2016
Leveraging Probabilistic Circuits for Nonparametric Multi-Output Regression
Z Yu, M Zhu, M Trapp, A Skryagin, K Kersting
Conference on Uncertainty in Artificial Intelligence (UAI), 2021
Sum-product-transform networks: Exploiting symmetries using invertible transformations
T Pevný, V Smídl, M Trapp, O Poláček, T Oberhuber
International Conference on Probabilistic Graphical Models, 341-352, 2020
Grounded word learning on a pepper robot
M Hirschmanner, S Gross, B Krenn, F Neubarth, M Trapp, M Vincze
Proceedings of the 18th International Conference on Intelligent Virtual …, 2018
Fixing overconfidence in dynamic neural networks
L Meronen, M Trapp, A Pilzer, L Yang, A Solin
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2024
Transport with support: Data-conditional diffusion bridges
E Tamir, M Trapp, A Solin
arXiv preprint arXiv:2301.13636, 2023
DynamicPPL: Stan-like speed for dynamic probabilistic models
M Tarek, K Xu, M Trapp, H Ge, Z Ghahramani
arXiv preprint arXiv:2002.02702, 2020
Anomaly detection using generative models and sum-product networks in mammography scans
M Dietrichstein, D Major, M Trapp, M Wimmer, D Lenis, P Winter, A Berg, ...
MICCAI Workshop on Deep Generative Models, 77-86, 2022
Representational multiplicity should be exposed, not eliminated
A Heljakka, M Trapp, J Kannala, A Solin
arXiv preprint arXiv:2206.08890, 2022
Models of cross-situational and crossmodal word learning in task-oriented scenarios
B Krenn, S Sadeghi, F Neubarth, S Gross, M Trapp, M Scheutz
IEEE Transactions on Cognitive and Developmental Systems 12 (3), 658-668, 2020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20