Magnetic control of tokamak plasmas through deep reinforcement learning J Degrave, F Felici, J Buchli, M Neunert, B Tracey, F Carpanese, T Ewalds, ... Nature 602 (7897), 414-419, 2022 | 772 | 2022 |
Learning by playing solving sparse reward tasks from scratch M Riedmiller, R Hafner, T Lampe, M Neunert, J Degrave, T Wiele, V Mnih, ... International conference on machine learning, 4344-4353, 2018 | 494 | 2018 |
Reinforcement learning for robot soccer M Riedmiller, T Gabel, R Hafner, S Lange Autonomous Robots 27, 55-73, 2009 | 404 | 2009 |
Data-efficient deep reinforcement learning for dexterous manipulation I Popov, N Heess, T Lillicrap, R Hafner, G Barth-Maron, M Vecerik, ... arXiv preprint arXiv:1704.03073, 2017 | 317 | 2017 |
Keep doing what worked: Behavioral modelling priors for offline reinforcement learning NY Siegel, JT Springenberg, F Berkenkamp, A Abdolmaleki, M Neunert, ... arXiv preprint arXiv:2002.08396, 2020 | 297 | 2020 |
Reinforcement learning in feedback control: Challenges and benchmarks from technical process control R Hafner, M Riedmiller Machine learning 84, 137-169, 2011 | 277 | 2011 |
Continuous-discrete reinforcement learning for hybrid control in robotics M Neunert, A Abdolmaleki, M Wulfmeier, T Lampe, T Springenberg, ... Conference on Robot Learning, 735-751, 2020 | 100 | 2020 |
Learning agile soccer skills for a bipedal robot with deep reinforcement learning T Haarnoja, B Moran, G Lever, SH Huang, D Tirumala, J Humplik, ... Science Robotics 9 (89), eadi8022, 2024 | 79 | 2024 |
Pves: Position-velocity encoders for unsupervised learning of structured state representations R Jonschkowski, R Hafner, J Scholz, M Riedmiller arXiv preprint arXiv:1705.09805, 2017 | 75 | 2017 |
Neural reinforcement learning controllers for a real robot application R Hafner, M Riedmiller Proceedings 2007 IEEE International Conference on Robotics and Automation …, 2007 | 69 | 2007 |
Data-efficient hindsight off-policy option learning M Wulfmeier, D Rao, R Hafner, T Lampe, A Abdolmaleki, T Hertweck, ... International Conference on Machine Learning, 11340-11350, 2021 | 49 | 2021 |
Imagined value gradients: Model-based policy optimization with tranferable latent dynamics models A Byravan, JT Springenberg, A Abdolmaleki, R Hafner, M Neunert, ... Conference on Robot Learning, 566-589, 2020 | 44 | 2020 |
Reinforcement learning on an omnidirectional mobile robot R Hafner, M Riedmiller Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and …, 2003 | 39 | 2003 |
Imitate and repurpose: Learning reusable robot movement skills from human and animal behaviors S Bohez, S Tunyasuvunakool, P Brakel, F Sadeghi, L Hasenclever, ... arXiv preprint arXiv:2203.17138, 2022 | 38 | 2022 |
Barkour: Benchmarking animal-level agility with quadruped robots K Caluwaerts, A Iscen, JC Kew, W Yu, T Zhang, D Freeman, KH Lee, ... arXiv preprint arXiv:2305.14654, 2023 | 37 | 2023 |
Compositional transfer in hierarchical reinforcement learning M Wulfmeier, A Abdolmaleki, R Hafner, JT Springenberg, M Neunert, ... arXiv preprint arXiv:1906.11228, 2019 | 37 | 2019 |
Making a robot learn to play soccer using reward and punishment H Müller, M Lauer, R Hafner, S Lange, A Merke, M Riedmiller KI 2007: Advances in Artificial Intelligence: 30th Annual German Conference …, 2007 | 35 | 2007 |
Diego de las Casas J Degrave, F Felici, J Buchli, M Neunert, B Tracey, F Carpanese, T Ewalds, ... Magnetic control of tokamak plasmas through deep reinforcement learning, 2022 | 33 | 2022 |
Towards general and autonomous learning of core skills: A case study in locomotion R Hafner, T Hertweck, P Klöppner, M Bloesch, M Neunert, M Wulfmeier, ... Conference on Robot Learning, 1084-1099, 2021 | 33 | 2021 |
Simultaneously learning vision and feature-based control policies for real-world ball-in-a-cup D Schwab, T Springenberg, MF Martins, T Lampe, M Neunert, ... arXiv preprint arXiv:1902.04706, 2019 | 29 | 2019 |