Folgen
Martin Danelljan
Martin Danelljan
Researcher, ETH Zurich
Bestätigte E-Mail-Adresse bei vision.ee.ethz.ch - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Accurate scale estimation for robust visual tracking
M Danelljan, G Häger, F Khan, M Felsberg
British Machine Vision Conference, Nottingham, September 1-5, 2014, 2014
22992014
Eco: Efficient convolution operators for tracking
M Danelljan, G Bhat, F Shahbaz Khan, M Felsberg
Proceedings of the IEEE conference on computer vision and pattern …, 2017
20702017
Learning spatially regularized correlation filters for visual tracking
M Danelljan, G Hager, F Shahbaz Khan, M Felsberg
Proceedings of the IEEE international conference on computer vision, 4310-4318, 2015
20012015
The visual object tracking vot2015 challenge results
M Kristan, J Matas, A Leonardis, M Felsberg, L Cehovin, G Fernandez, ...
Proceedings of the IEEE international conference on computer vision …, 2015
19232015
Beyond correlation filters: Learning continuous convolution operators for visual tracking
M Danelljan, A Robinson, F Shahbaz Khan, M Felsberg
European conference on computer vision, 472-488, 2016
17132016
Adaptive color attributes for real-time visual tracking
M Danelljan, F Shahbaz Khan, M Felsberg, J Van de Weijer
Proceedings of the IEEE conference on computer vision and pattern …, 2014
17042014
Discriminative scale space tracking
M Danelljan, G Häger, FS Khan, M Felsberg
IEEE transactions on pattern analysis and machine intelligence 39 (8), 1561-1575, 2016
10662016
Convolutional features for correlation filter based visual tracking
M Danelljan, G Hager, F Shahbaz Khan, M Felsberg
Proceedings of the IEEE international conference on computer vision …, 2015
10242015
Atom: Accurate tracking by overlap maximization
M Danelljan, G Bhat, FS Khan, M Felsberg
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
6952019
The sixth visual object tracking vot2018 challenge results
M Kristan, A Leonardis, J Matas, M Felsberg, R Pflugfelder, ...
Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 0-0, 2018
6362018
Learning discriminative model prediction for tracking
G Bhat, M Danelljan, LV Gool, R Timofte
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
5582019
Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking
M Danelljan, G Hager, F Shahbaz Khan, M Felsberg
Proceedings of the IEEE conference on computer vision and pattern …, 2016
4182016
Unveiling the power of deep tracking
G Bhat, J Johnander, M Danelljan, FS Khan, M Felsberg
Proceedings of the European Conference on Computer Vision (ECCV), 483-498, 2018
3922018
The seventh visual object tracking vot2019 challenge results
M Kristan, J Matas, A Leonardis, M Felsberg, R Pflugfelder, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
3132019
Probabilistic regression for visual tracking
M Danelljan, LV Gool, R Timofte
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
2482020
Deep projective 3D semantic segmentation
FJ Lawin, M Danelljan, P Tosteberg, G Bhat, FS Khan, M Felsberg
International Conference on Computer Analysis of Images and Patterns, 95-107, 2017
2202017
Learning the model update for siamese trackers
L Zhang, A Gonzalez-Garcia, J Weijer, M Danelljan, FS Khan
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
1872019
Evaluating scalable bayesian deep learning methods for robust computer vision
FK Gustafsson, M Danelljan, TB Schon
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020
1442020
The thermal infrared visual object tracking VOT-TIR2015 challenge results
M Felsberg, A Berg, G Hager, J Ahlberg, M Kristan, J Matas, A Leonardis, ...
Proceedings of the ieee international conference on computer vision …, 2015
1412015
Video object segmentation with episodic graph memory networks
X Lu, W Wang, M Danelljan, T Zhou, J Shen, LV Gool
European Conference on Computer Vision, 661-679, 2020
1402020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20