Folgen
M. Reza Peyghami
M. Reza Peyghami
Professor in Applied Mathematics (Optimization)
Bestätigte E-Mail-Adresse bei humber.ca
Titel
Zitiert von
Zitiert von
Jahr
A nonmonotone trust-region line search method for large-scale unconstrained optimization
M Ahookhosh, K Amini, MR Peyghami
Applied Mathematical Modelling 36 (1), 478-487, 2012
1052012
Complexity of interior-point methods for linear optimization based on a new trigonometric kernel function
MR Peyghami, SF Hafshejani, L Shirvani
Journal of Computational and Applied Mathematics 255, 74-85, 2014
632014
Complexity analysis of an interior-point algorithm for linear optimization based on a new proximity function
MR Peyghami, SF Hafshejani
Numerical Algorithms 67, 33-48, 2014
452014
The central path visits all the vertices of the Klee–Minty cube
A Deza, E Nematollahi, R Peyghami, T Terlaky
Optimisation Methods and Software 21 (5), 851-865, 2006
312006
A new nonsmooth trust region algorithm for locally Lipschitz unconstrained optimization problems
Z Akbari, R Yousefpour, M Reza Peyghami
Journal of Optimization Theory and Applications 164, 733-754, 2015
242015
Exploring complexity of large update interior-point methods for P∗(κ) linear complementarity problem based on kernel function
K Amini, MR Peyghami
Applied Mathematics and Computation 207 (2), 501-513, 2009
212009
A primal–dual interior-point method for semidefinite optimization based on a class of trigonometric barrier functions
MR Peyghami, S Fathi-Hafshejani, S Chen
Operations Research Letters 44 (3), 319-323, 2016
202016
A new class of efficient and globally convergent conjugate gradient methods in the Dai–Liao family
MR Peyghami, H Ahmadzadeh, A Fazli
Optimization Methods and Software 30 (4), 843-863, 2015
202015
A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems
M Reza Peyghami, D Ataee Tarzanagh
Computational Optimization and Applications 61, 321-341, 2015
202015
Novel MLP neural network with hybrid tabu search algorithm
MR Peyghami, R Khanduzi
Neural Network World 23 (3), 255, 2013
202013
Data envelopment analysis and interdiction median problem with fortification for enabling IoT technologies to relieve potential attacks
R Khanduzi, MR Peyghami, AK Sangaiah
Future Generation Computer Systems 79, 928-940, 2018
192018
A new nonmonotone trust region method for unconstrained optimization equipped by an efficient adaptive radius
D Ataee Tarzanagh, MR Peyghami, H Mesgarani
Optimization methods and software 29 (4), 819-836, 2014
192014
Primal–dual interior-point method for linear optimization based on a kernel function with trigonometric growth term
S Fathi-Hafshejani, H Mansouri, M Reza Peyghami, S Chen
Optimization 67 (10), 1605-1630, 2018
172018
A kernel function based Interior-Point Methods for solving P *(κ)-linear complementarity problem
MR Peyghami, K Amini
Acta Mathematica Sinica, English Series 26, 1761-1778, 2010
172010
An interior-point method for -linear complementarity problem based on a trigonometric kernel function
SF Hafshejani, M Fatemi, MR Peyghami
Journal of Applied Mathematics and Computing 48, 111-128, 2015
162015
An interior point approach for semidefinite optimization using new proximity functions
MR Peyghami
Asia-Pacific Journal of Operational Research 26 (03), 365-382, 2009
162009
A large-update primal–dual interior-point algorithm for second-order cone optimization based on a new proximity function
S Fathi-Hafshejani, H Mansouri, MR Peyghami
Optimization 65 (7), 1477-1496, 2016
142016
Predictability and forecasting automotive price based on a hybrid train algorithm of MLP neural network
MR Peyghami, R Khanduzi
Neural Computing and Applications 21, 125-132, 2012
142012
Optimal rate for irregular LDPC codes in binary erasure channel
H Tavakoli, MA Attari, MR Peyghami
2011 IEEE Information Theory Workshop, 125-129, 2011
142011
An Interior-Point Algorithm for Linear Optimization Based on a New Kernel Function.
K Amini, MR Peyghami
Southeast Asian Bulletin of Mathematics 29 (4), 2005
142005
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20