Folgen
Minori Narita
Minori Narita
Bestätigte E-Mail-Adresse bei mail.utoronto.ca
Titel
Zitiert von
Zitiert von
Jahr
Adversarial discriminative attention for robust anomaly detection
D Kimura, S Chaudhury, M Narita, A Munawar, R Tachibana
Proceedings of the IEEE/CVF winter conference on applications of computer …, 2020
522020
Morphology and dynamics of Venus's middle clouds with Akatsuki/IR1
J Peralta, N Iwagami, A Sánchez‐Lavega, YJ Lee, R Hueso, M Narita, ...
Geophysical Research Letters 46 (5), 2399-2407, 2019
202019
Data-centric disambiguation for data transformation with programming-by-example
M Narita, N Maudet, Y Lu, T Igarashi
Proceedings of the 26th International Conference on Intelligent User …, 2021
52021
Spatially-weighted anomaly detection with regression model
D Kimura, M Narita, A Munawar, R Tachibana
arXiv preprint arXiv:1903.09798, 2019
52019
Correlation of Venusian mesoscale cloud morphology between images acquired at various wavelengths
M Narita, T Imamura, YJ Lee, S Watanabe, A Yamazaki, T Satoh, ...
Journal of Geophysical Research: Planets 127 (6), e2022JE007228, 2022
42022
Automatic Detection of Stationary Waves in the Venus Atmosphere Using Deep Generative Models
M Narita, D Kimura, T Imamura
2020 25th International Conference on Pattern Recognition (ICPR), 2912-2919, 2021
32021
Programming-by-example for data transformation to improve machine learning performance
M Narita, T Igarashi
Companion Proceedings of the 24th International Conference on Intelligent …, 2019
32019
Spatially-weighted anomaly detection
M Narita, D Kimura, R Tachibana
arXiv preprint arXiv:1810.02607, 2018
22018
Introducing Trial-and-Error Exploration to Avoid Critical Failure for Efficient Reinforcement Learning
M Narita, D Kimura
International Joint Conference on Artificial Intelligence, 2023
2023
FlashAttention: data-centric interaction for data transformation using Programming-by-Example
M Narita, N Maudet, Y Lu, T Igarashi
Adjunct Proceedings of the 33rd Annual ACM Symposium on User Interface …, 2020
2020
Learning from Failure: Introducing Failure Ratio in RL
M Narita, D Kimura
International Joint Conference on Artificial Intelligence, 2020
2020
Efficient Exploration with Failure Ratio for Deep Reinforcement Learning
M Narita, D Kimura
AAAI Conference on Artificial Intelligence, 2020
2020
Identifying Missing Features in State Representation for Safe Decision-Making
M Narita, S Saisubramanian, RA Grupen, S Zilberstein
VAEGANͱAttentionΛ׆༻ ͨ͠ҟৗݕग़ख๏
D Kimura, M Narita, R Tachibana
Learning from Failure: Introducing Failure Ratio in Reinforcement Learning
M Narita, D Kimura
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–15