The inductive bias of quantum kernels J Kübler*, S Buchholz*, B Schölkopf Advances in Neural Information Processing Systems 34, 12661-12673, 2021 | 130 | 2021 |
Learning Linear Causal Representations from Interventions under General Nonlinear Mixing S Buchholz*, G Rajendran*, E Rosenfeld, B Aragam, B Schölkopf, ... NeurIPS 2023 (oral), 2023 | 50 | 2023 |
Function classes for identifiable nonlinear independent component analysis S Buchholz, M Besserve, B Schölkopf Advances in Neural Information Processing Systems 35, 16946-16961, 2022 | 43 | 2022 |
Causal Component Analysis W Liang, A Kekić, J von Kügelgen, S Buchholz, M Besserve, L Gresele, ... NeurIPS 2023, 2023 | 39* | 2023 |
Multivariate central limit theorem in quantum dynamics S Buchholz, C Saffirio, B Schlein Journal of Statistical Physics 154 (1), 113-152, 2014 | 39 | 2014 |
Flow Matching for Scalable Simulation-Based Inference M Dax*, J Wildberger*, S Buchholz*, SR Green, JH Macke, B Schölkopf NeurIPS 2023, 2023 | 29* | 2023 |
AutoML two-sample test JM Kübler, V Stimper, S Buchholz, K Muandet, B Schölkopf Advances in Neural Information Processing Systems 35, 15929-15941, 2022 | 19 | 2022 |
Kernel interpolation in Sobolev spaces is not consistent in low dimensions S Buchholz Conference on Learning Theory, 3410-3440, 2022 | 17 | 2022 |
Cauchy-born rule from microscopic models with non-convex potentials S Adams, S Buchholz, R Kotecký, S Müller arXiv preprint arXiv:1910.13564, 2019 | 17 | 2019 |
Phase transitions for a class of gradient fields S Buchholz Probability Theory and Related Fields 179, 969-1022, 2021 | 13 | 2021 |
Finite range decomposition for Gaussian measures with improved regularity S Buchholz Journal of Functional Analysis 275 (7), 1674-1711, 2018 | 10 | 2018 |
Learning interpretable concepts: Unifying causal representation learning and foundation models G Rajendran, S Buchholz, B Aragam, B Schölkopf, P Ravikumar arXiv preprint arXiv:2402.09236, 2024 | 8 | 2024 |
Probability to be positive for the membrane model in dimensions 2 and 3 S Buchholz, JD Deuschel, N Kurt, F Schweiger | 7 | 2019 |
A Measure-Theoretic Axiomatisation of Causality J Park, S Buchholz, B Schölkopf, K Muandet NeurIPS 2023 (oral), 2023 | 4 | 2023 |
Cauchy-Born Rule from Microscopic Models with Non-convex Potentials. 2019 S Adams, S Buchholz, R Kotecký, S Müller Preprint, 1910 | 4 | 1910 |
Einführung in die partiellen Differentialgleichungen S Müller, S Buchholz | 3 | 2017 |
Renormalisation in discrete elasticity SH Buchholz Universitäts-und Landesbibliothek Bonn, 2019 | 2 | 2019 |
Robustness of Nonlinear Representation Learning S Buchholz, B Schölkopf Forty-first International Conference on Machine Learning, 0 | 2 | |
Aizenman-Wehr argument for a class of disordered gradient models S Buchholz, C Cotar arXiv preprint arXiv:2309.12799, 2023 | 1 | 2023 |
Some remarks on identifiability of independent component analysis in restricted function classes S Buchholz Transactions on Machine Learning Research, 2023 | 1 | 2023 |