Folgen
Yousri Kessentini
Yousri Kessentini
Digital Research Center of Sfax (CRNS)
Bestätigte E-Mail-Adresse bei crns.rnrt.tn - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Off-line handwritten word recognition using multi-stream hidden Markov models
Y Kessentini, T Paquet, AMB Hamadou
Pattern Recognition Letters 31 (1), 60-70, 2010
1262010
A two-stage deep neural network for multi-norm license plate detection and recognition
Y Kessentini, MD Besbes, S Ammar, A Chabbouh
Expert systems with applications 136, 159-170, 2019
772019
Federated learning for COVID-19 screening from Chest X-ray images
I Feki, S Ammar, Y Kessentini, K Muhammad
Applied Soft Computing 106, 107330, 2021
562021
A Dempster–Shafer Theory based combination of handwriting recognition systems with multiple rejection strategies
Y Kessentini, T Burger, T Paquet
Pattern Recognition 48 (2), 534-544, 2015
382015
DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement
MA Souibgui, Y Kessentini
IEEE transactions on pattern analysis and machine intelligence 44 (3), 1180-1191, 2022
342022
A Deep HMM model for multiple keywords spotting in handwritten documents
S Thomas, C Chatelain, L Heutte, T Paquet, Y Kessentini
Pattern Analysis and Applications 18, 1003-1015, 2015
312015
A multi-stream HMM-based approach for off-line multi-script handwritten word recognition
Y KESSENTINI, T PAQUET, AM BEN HAMADOU
International Conference on Frontiers in Handwriting Recognition ICFHR 1 …, 2008
312008
Handwritten document segmentation using hidden Markov random fields
S Nicolas, Y Kessentini, T Paquet, L Heutte
Eighth International Conference on Document Analysis and Recognition (ICDAR …, 2005
222005
Evidential combination of multiple HMM classifiers for multi-script handwritting recognition
Y Kessentini, T Burger, T Paquet
International Conference on Information Processing and Management of …, 2010
192010
A multi-stream approach to off-line handwritten word recognition
Y Kessentini, T Paquet, AM Ben hamadou
Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International …, 2007
192007
Multi-nation and multi-norm license plates detection in real traffic surveillance environment using deep learning
A Naimi, Y Kessentini, M Hammami
International conference on neural information processing, 462-469, 2016
182016
Out of vocabulary word detection and recovery in Arabic handwritten text recognition
SK Jemni, Y Kessentini, S Kanoun
Pattern Recognition 93, 507-520, 2019
172019
Dempster-Shafer based rejection strategy for handwritten word recognition
T Burger, Y Kessentini, T Paquet
2011 International Conference on Document Analysis and Recognition, 528-532, 2011
162011
Offline Arabic handwriting recognition using BLSTMs combination
SK Jemni, Y Kessentini, S Kanoun, JM Ogier
2018 13th IAPR International Workshop on Document Analysis Systems (DAS), 31-36, 2018
152018
Word Spotting and Regular Expression Detection in Handwritten Documents
Y Kessentini, C Chatelain, T Paquet
Document Analysis and Recognition (ICDAR), 2013 12th International …, 2013
152013
A multi-lingual recognition system for Arabic and Latin handwriting
Y KESSENTINI, T PAQUET, AM BEN HAMADOU
Document Analysis and Recognition, 2009. ICDAR'09. 10th International …, 2009
152009
Multi-script handwriting recognition with n-streams low level features
Y Kessentini, T Paquet, A Ben hamadou
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, 1-4, 2008
152008
Transformer-based approach for joint handwriting and named entity recognition in historical document
AC Rouhou, M Dhiaf, Y Kessentini, SB Salem
Pattern Recognition Letters 155, 128-134, 2022
142022
Two stages pan-sharpening details injection approach based on very deep residual networks
T Benzenati, A Kallel, Y Kessentini
IEEE Transactions on Geoscience and Remote Sensing 59 (6), 4984-4992, 2020
142020
Evidential combination of SVM road obstacle classifiers in visible and far infrared images
B Besbes, S Ammar, Y Kessentini, A Rogozan, A Bensrhair
2011 IEEE Intelligent Vehicles Symposium (IV), 1074-1079, 2011
142011
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20