Swarnendu Ghosh
Swarnendu Ghosh
Ph.D Scholar at Jadavpur University, Computer Science and Engineering Department
Bestätigte E-Mail-Adresse bei jadavpuruniversity.in
Titel
Zitiert von
Zitiert von
Jahr
Understanding deep learning techniques for image segmentation
S Ghosh, N Das, I Das, U Maulik
ACM Computing Surveys(CSUR) 52 (4), 2019
972019
The journey of graph kernels through two decades
S Ghosh, N Das, T Gonçalves, P Quaresma, M Kundu
Computer Science Review 27, 88-111, 2018
542018
Deep learning for word-level handwritten Indic script identification
S Ukil, S Ghosh, SM Obaidullah, KC Santosh, K Roy, N Das
The 3rd International Conference on Recent Trends in Image Processing …, 2020
252020
Improved word-level handwritten indic script identification by integrating small convolutional neural networks
U Soumya, G Swarnendu, OS Md, KC Santosh, R Kaushik, D Nibaran
Neural Computing & Applications 32 (7), 2829-2844, 2020
232020
Comparison of different graph distance metrics for semantic text based classification
N Das, S Ghosh, T Gonçalves, P Quaresma
Polibits, 51-58, 2014
212014
Reshaping inputs for convolutional neural network: Some common and uncommon methods
S Ghosh, N Das, M Nasipuri
Pattern Recognition 93, 79-94, 2019
192019
SegFast-V2: Semantic image segmentation with less parameters in deep learning for autonomous driving
S Ghosh, A Pal, S Jaiswal, KC Santosh, N Das, M Nasipuri
International Journal of Machine Learning and Cybernetics, 1-10, 2019
162019
Handwritten indic character recognition using capsule networks
B Mandal, S Dubey, S Ghosh, R Sarkhel, N Das
2018 IEEE Applied Signal Processing Conference (ASPCON), 304-308, 2018
102018
SegFast : A Faster SqueezeNet based Semantic Image Segmentation Technique using Depth-wise Separable Convolutions
A Pal, S Jaiswal, S Ghosh, N Das, M Nasipuri
11th Indian Conference on Computer Vision, Graphics and Image Processing …, 2018
72018
Using graphs and semantic information to improve text classifiers
N Das, S Ghosh, T Gonçalves, P Quaresma
International Conference on Natural Language Processing, 324-336, 2014
72014
Combining multilevel contexts of superpixel using convolutional neural networks to perform natural scene labeling
A Das, S Ghosh, R Sarkhel, S Choudhuri, N Das, M Nasipuri
Recent developments in machine learning and data analytics, 297-306, 2019
42019
Representing image captions as concept graphs using semantic information
S Ghosh, N Das, T Gonçalves, P Quaresma
2016 International Conference on Advances in Computing, Communications and …, 2016
42016
Handwritten oriya digit recognition using maximum common subgraph based similarity measures
S Ghosh, N Das, M Kundu, M Nasipuri
Information Systems Design and Intelligent Applications, 165-173, 2016
42016
Two-phase Dynamic Routing for Micro and Macro-level Equivariance in Multi-Column Capsule Networks
B Mandal, R Sarkhel, S Ghosh, N Das, M Nasipuri
Pattern Recognition 109, 107595, 2020
32020
GSD-Net: Compact Network for Pixel-level Graphical Symbol Detection
S Ghosh, P Shaw, N Das, KC Santosh
13th IAPR International Workshop on Graphics Recognition (GREC 2019), 2019
32019
Combining multi-level contexts of superpixel using convolutional neural networks to perform natural scene labeling
A Das, S Ghosh, R Sarkhel, S Choudhuri, N Das, M Nasipuri
arXiv preprint arXiv:1803.05200, 2018
32018
Deep Learning Models for Medical Imaging
KC Santosh, N Das, S Ghosh
Academic Press, 2021
22021
Multi scale mirror connection based encoder decoder network for text localization
K Dutta, M Bal, A Basak, S Ghosh, N Das, M Kundu, M Nasipuri
Pattern Recognition Letters 135, 64-71, 2020
22020
Using thermal intensities to build conditional random fields for object segmentation at night
A Dutta, B Mandal, S Ghosh, N Das
4th International Conference on Computational Intelligence and Networks …, 2020
22020
Using dynamic routing to extract intermediate features for developing scalable capsule networks
B Mandal, S Ghosh, R Sarkhel, N Das, M Nasipuri
Second International Conference on Advanced Computational and Communication …, 2019
22019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20