Follow
Qiang Hu
Title
Cited by
Cited by
Year
An empirical study towards characterizing deep learning development and deployment across different frameworks and platforms
Q Guo, S Chen, X Xie, L Ma, Q Hu, H Liu, Y Liu, J Zhao, X Li
ASE 2019, 2019
1142019
DeepMutation++: A mutation testing framework for deep learning systems
Q Hu, L Ma, X Xie, B Yu, Y Liu, J Zhao
ASE 2019, 2019
832019
Towards characterizing adversarial defects of deep learning software from the lens of uncertainty
X Zhang, X Xie, L Ma, X Du, Q Hu, Y Liu, J Zhao, M Sun
ICSE 2020, 2020
702020
Secure deep learning engineering: A software quality assurance perspective
L Ma, F Juefei-Xu, M Xue, Q Hu, S Chen, B Li, Y Liu, J Zhao, J Yin, S See
arXiv preprint arXiv:1810.04538, 2018
322018
An Empirical Study on Data Distribution-Aware Test Selection for Deep Learning Enhancement
Q Hu, Y Guo, M Cordy, X Xie, L Ma, M Papadakis, Y Le Traon
TOSEM 2022, 2022
212022
GraphCode2Vec: Generic Code Embedding via Lexical and Program Dependence Analyses
W Ma, M Zhao, E Soremekun, Q Hu, J Zhang, M Papadakis, M Cordy, ...
MSR 2022, 2021
212021
Deepgraph: A pycharm tool for visualizing and understanding deep learning models
Q Hu, L Ma, J Zhao
APSEC 2018, 2018
192018
Towards Exploring the Limitations of Active Learning: An Empirical Study
Q Hu, Y Guo, M Cordy, X Xie, W Ma, M Papadakis, Y Le Traon
ASE 2021, 2021
122021
The Scope of ChatGPT in Software Engineering: A Thorough Investigation
W Ma, S Liu, W Wang, Q Hu, Y Liu, C Zhang, L Nie, Y Liu
arXiv preprint arXiv:2305.12138, 2023
72023
DRE: density-based data selection with entropy for adversarial-robust deep learning models
Y Guo, Q Hu, M Cordy, M Papadakis, Y Le Traon
Neural Computing and Applications 35 (5), 4009-4026, 2023
6*2023
CodeS: Towards Code Model Generalization Under Distribution Shift
Q Hu, Y Guo, X Xie, M Cordy, L Ma, M Papadakis, YL Traon
ICSE 2023 NIER, 2022
4*2022
Is Self-Attention Powerful to Learn Code Syntax and Semantics?
W Ma, M Zhao, X Xie, Q Hu, S Liu, J Zhang, W Wang, Y Liu
arXiv preprint arXiv:2212.10017, 2022
22022
MixCode: Enhancing Code Classification by Mixup-Based Data Augmentation
Z Dong, Q Hu, Y Guo, M Cordy, M Papadakis, YL Traon, J Zhao
SANER 2023, 2022
2*2022
MUTEN: Boosting Gradient-Based Adversarial Attacks via Mutant-Based Ensembles
Y Guo, Q Hu, M Cordy, M Papadakis, YL Traon
ASE 2023 NIER, 2021
22021
Aries: Efficient Testing of Deep Neural Networks via Labeling-Free Accuracy Estimation
Q Hu, Y Guo, X Xie, M Cordy, L Ma, M Papadakis, YL Traon
ICSE 2023, 2022
12022
Characterizing and Understanding the Behavior of Quantized Models for Reliable Deployment
Q Hu, Y Guo, M Cordy, X Xie, W Ma, M Papadakis, YL Traon
CAIN 2023, 2022
12022
Evaluating the Robustness of Test Selection Methods for Deep Neural Networks
Q Hu, Y Guo, X Xie, M Cordy, W Ma, M Papadakis, YL Traon
arXiv preprint arXiv:2308.01314, 2023
2023
CodeLens: An Interactive Tool for Visualizing Code Representations
Y Guo, S Bettaieb, Q Hu, YL Traon, Q Tang
arXiv preprint arXiv:2307.14902, 2023
2023
Active Code Learning: Benchmarking Sample-Efficient Training of Code Models
Q Hu, Y Guo, X Xie, M Cordy, L Ma, M Papadakis, YL Traon
arXiv preprint arXiv:2306.01250, 2023
2023
RNNS: Representation Nearest Neighbor Search Black-Box Attack on Code Models
J Zhang, W Ma, Q Hu, X Xie, YL Traon, Y Liu
arXiv preprint arXiv:2305.05896, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–20