Folgen
Daiki Kimura
Daiki Kimura
IBM Research
Bestätigte E-Mail-Adresse bei jp.ibm.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Adversarial discriminative attention for robust anomaly detection
D Kimura, S Chaudhury, M Narita, A Munawar, R Tachibana
Proceedings of the IEEE/CVF winter conference on applications of computer …, 2020
512020
Neuro-symbolic reinforcement learning with first-order logic
D Kimura, M Ono, S Chaudhury, R Kohita, A Wachi, DJ Agravante, ...
arXiv preprint arXiv:2110.10963, 2021
372021
Focusing on what is relevant: Time-series learning and understanding using attention
P Vinayavekhin, S Chaudhury, A Munawar, DJ Agravante, G De Magistris, ...
2018 24th International Conference on Pattern Recognition (ICPR), 2624-2629, 2018
312018
Daqn: Deep auto-encoder and q-network
D Kimura
arXiv preprint arXiv:1806.00630, 2018
242018
Internal Model from Observations for Reward Shaping
D Kimura, S Chaudhury, R Tachibana, S Dasgupta
Thirty-fifth International Conference on Machine Learning workshop (ALA 2018), 2018
242018
Development of a throw & collect type rescue inspector
E Watari, H Tsukagoshi, T Tanaka, D Kimura, A Kitagawa
Proceedings 2007 IEEE International Conference on Robotics and Automation …, 2007
232007
Maestrob: A robotics framework for integrated orchestration of low-level control and high-level reasoning
A Munawar, G De Magistris, TH Pham, D Kimura, M Tatsubori, ...
2018 IEEE International Conference on Robotics and Automation (ICRA), 527-534, 2018
222018
Neuro-symbolic approaches for text-based policy learning
S Chaudhury, P Sen, M Ono, D Kimura, M Tatsubori, A Munawar
Proceedings of the 2021 Conference on Empirical Methods in Natural Language …, 2021
152021
Reinforcement learning with external knowledge by using logical neural networks
D Kimura, S Chaudhury, A Wachi, R Kohita, A Munawar, M Tatsubori, ...
arXiv preprint arXiv:2103.02363, 2021
152021
Reward estimation via state prediction using expert demonstrations
D Kimura, S Dasgupta, S Chaudhury, R Tachibana
US Patent App. 15/909,304, 2019
152019
LOA: Logical optimal actions for text-based interaction games
D Kimura, S Chaudhury, M Ono, M Tatsubori, DJ Agravante, A Munawar, ...
arXiv preprint arXiv:2110.10973, 2021
112021
Bootstrapped q-learning with context relevant observation pruning to generalize in text-based games
S Chaudhury, D Kimura, K Talamadupula, M Tatsubori, A Munawar, ...
arXiv preprint arXiv:2009.11896, 2020
112020
Human-like hand reaching by motion prediction using long short-term memory
P Vinayavekhin, M Tatsubori, D Kimura, Y Huang, G De Magistris, ...
Social Robotics: 9th International Conference, ICSR 2017, Tsukuba, Japan …, 2017
102017
Ultra-fast multimodal and online transfer learning on humanoid robots
D Kimura, R Nishimura, A Oguro, O Hasegawa
8th ACM/IEEE international conference on Human-robot interaction (HRI), 165-166, 2013
92013
X-factor: A cross-metric evaluation of factual correctness in abstractive summarization
S Chaudhury, S Swaminathan, C Gunasekara, M Crouse, S Ravishankar, ...
Proceedings of the 2022 Conference on Empirical Methods in Natural Language …, 2022
82022
Region of interest weighted anomaly detection
D Kimura, R Tachibana
US Patent 10,909,671, 2021
82021
A study for detecting mild cognitive impairment by analyzing conversations with humanoid robots
K Yoshii, M Nishimura, D Kimura, A Kosugi, K Shinkawa, T Takase, ...
2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech …, 2021
72021
Estimating multimodal attributes for unknown objects
D Kimura, O Hasegawa
2015 International Joint Conference on Neural Networks (IJCNN), 1-8, 2015
72015
Learning symbolic rules over abstract meaning representations for textual reinforcement learning
S Chaudhury, S Swaminathan, D Kimura, P Sen, K Murugesan, ...
arXiv preprint arXiv:2307.02689, 2023
62023
Screening of mild cognitive impairment through conversations with humanoid robots: Exploratory pilot study
K Yoshii, D Kimura, A Kosugi, K Shinkawa, T Takase, M Kobayashi, ...
JMIR Formative Research 7 (1), e42792, 2023
52023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20