Folgen
Hardik Sharma
Titel
Zitiert von
Zitiert von
Jahr
From high-level deep neural models to FPGAs
H Sharma, J Park, D Mahajan, E Amaro, JK Kim, C Shao, A Mishra, ...
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture …, 2016
6432016
Bit fusion: Bit-level dynamically composable architecture for accelerating deep neural network
H Sharma, J Park, N Suda, L Lai, B Chau, JK Kim, V Chandra, ...
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture …, 2018
6152018
Tabla: A unified template-based framework for accelerating statistical machine learning
D Mahajan, J Park, E Amaro, H Sharma, A Yazdanbakhsh, JK Kim, ...
2016 IEEE International Symposium on High Performance Computer Architecture …, 2016
2162016
Neural acceleration for GPU throughput processors
A Yazdanbakhsh, J Park, H Sharma, P Lotfi-Kamran, H Esmaeilzadeh
Proceedings of the 48th international symposium on microarchitecture, 482-493, 2015
1362015
Planaria: Dynamic architecture fission for spatial multi-tenant acceleration of deep neural networks
S Ghodrati, BH Ahn, JK Kim, S Kinzer, BR Yatham, N Alla, H Sharma, ...
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture …, 2020
1212020
Dnnweaver: From high-level deep network models to fpga acceleration
H Sharma, J Park, E Amaro, B Thwaites, P Kotha, A Gupta, JK Kim, ...
the Workshop on Cognitive Architectures, 2016
812016
Scale-out acceleration for machine learning
J Park, H Sharma, D Mahajan, JK Kim, P Olds, H Esmaeilzadeh
Proceedings of the 50th Annual IEEE/ACM International Symposium on …, 2017
642017
Mixed-signal charge-domain acceleration of deep neural networks through interleaved bit-partitioned arithmetic
S Ghodrati, H Sharma, S Kinzer, A Yazdanbakhsh, J Park, NS Kim, ...
Proceedings of the ACM International Conference on Parallel Architectures …, 2020
322020
Bit-parallel vector composability for neural acceleration
S Ghodrati, H Sharma, C Young, NS Kim, H Esmaeilzadeh
2020 57th ACM/IEEE Design Automation Conference (DAC), 1-6, 2020
262020
Processing artificial neural network weights
AE Chalfin, H Sharma, TJ Olson
US Patent 10,599,935, 2020
162020
Systems, apparatus, methods, and architecture for precision heterogeneity in accelerating neural networks for inference and training
H Sharma, J Park
US Patent App. 16/744,037, 2020
142020
{CoVA}: Exploiting {Compressed-Domain} analysis to accelerate video analytics
J Hwang, M Kim, D Kim, S Nam, Y Kim, D Kim, H Sharma, J Park
2022 USENIX Annual Technical Conference (USENIX ATC 22), 707-722, 2022
122022
Systems, apparatus, methods, and architectures for a neural network workflow to generate a hardware accelerator
H Sharma, J Park
US Patent 11,321,606, 2022
102022
Systems, apparatus, methods, and architectures for heterogeneous precision acceleration of quantized neural networks
H Sharma, J Park
US Patent App. 16/744,039, 2020
102020
Hardware acceleration pipeline with filtering engine for column-oriented database management systems with arbitrary scheduling functionality
H Sharma, M Brzozowski, B Samynathan
US Patent App. 16/988,650, 2021
62021
The impact of 3D stacking on GPU-accelerated deep neural networks: An experimental study
W Wahby, T Sarvey, H Sharma, H Esmaeilzadeh, MS Bakir
2016 IEEE International 3D Systems Integration Conference (3DIC), 1-4, 2016
42016
Domain-specific computational storage for serverless computing
R Mahapatra, S Ghodrati, BH Ahn, S Kinzer, S Wang, H Xu, L Karthikeyan, ...
arXiv preprint arXiv:2303.03483, 2023
32023
DnnWeaver v2. 0: From tensors to FPGAs
H Sharma, J Park, B Samynathan, B Robatmili, S Mirkhani, ...
Memory2. 1 (), 3, 2016
32016
In-storage domain-specific acceleration for serverless computing
R Mahapatra, S Ghodrati, BH Ahn, S Kinzer, ST Wang, H Xu, ...
Proceedings of the 29th ACM International Conference on Architectural …, 2024
22024
DaCapo: Accelerating Continuous Learning in Autonomous Systems for Video Analytics
Y Kim, C Oh, J Hwang, W Kim, S Oh, Y Lee, H Sharma, A Yazdanbakhsh, ...
arXiv preprint arXiv:2403.14353, 2024
22024
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20