Folgen
Tara Sainath
Tara Sainath
Principal Research Scientist, Google
Bestätigte E-Mail-Adresse bei google.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
G Hinton, L Deng, D Yu, GE Dahl, A Mohamed, N Jaitly, A Senior, ...
IEEE Signal processing magazine 29 (6), 82-97, 2012
137132012
Deep convolutional neural networks for large-scale speech tasks
TN Sainath, B Kingsbury, G Saon, H Soltau, A Mohamed, G Dahl, ...
Neural networks 64, 39-48, 2015
20382015
Convolutional, long short-term memory, fully connected deep neural networks
TN Sainath, O Vinyals, A Senior, H Sak
2015 IEEE international conference on acoustics, speech and signal …, 2015
20122015
Improving deep neural networks for LVCSR using rectified linear units and dropout
GE Dahl, TN Sainath, GE Hinton
2013 IEEE international conference on acoustics, speech and signal …, 2013
19022013
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ...
arXiv preprint arXiv:2312.11805, 2023
14902023
State-of-the-art speech recognition with sequence-to-sequence models
CC Chiu, TN Sainath, Y Wu, R Prabhavalkar, P Nguyen, Z Chen, ...
2018 IEEE international conference on acoustics, speech and signal …, 2018
14552018
Deep learning for audio signal processing
H Purwins, B Li, T Virtanen, J Schlüter, SY Chang, T Sainath
IEEE Journal of Selected Topics in Signal Processing 13 (2), 206-219, 2019
8532019
Low-rank matrix factorization for deep neural network training with high-dimensional output targets
TN Sainath, B Kingsbury, V Sindhwani, E Arisoy, B Ramabhadran
2013 IEEE international conference on acoustics, speech and signal …, 2013
7842013
Streaming end-to-end speech recognition for mobile devices
Y He, TN Sainath, R Prabhavalkar, I McGraw, R Alvarez, D Zhao, ...
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and …, 2019
7362019
Convolutional neural networks for small-footprint keyword spotting.
TN Sainath, C Parada
Interspeech, 1478-1482, 2015
6492015
Learning the speech front-end with raw waveform CLDNNs.
TN Sainath, RJ Weiss, AW Senior, KW Wilson, O Vinyals
Interspeech, 1-5, 2015
6212015
Deep belief networks using discriminative features for phone recognition
A Mohamed, TN Sainath, G Dahl, B Ramabhadran, GE Hinton, ...
2011 IEEE international conference on acoustics, speech and signal …, 2011
4062011
A Comparison of sequence-to-sequence models for speech recognition.
R Prabhavalkar, K Rao, TN Sainath, B Li, L Johnson, N Jaitly
Interspeech, 939-943, 2017
3922017
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ...
arXiv preprint arXiv:2403.05530, 2024
3582024
Self-supervised speech representation learning: A review
A Mohamed, H Lee, L Borgholt, JD Havtorn, J Edin, C Igel, K Kirchhoff, ...
IEEE Journal of Selected Topics in Signal Processing 16 (6), 1179-1210, 2022
3422022
Improvements to deep convolutional neural networks for LVCSR
TN Sainath, B Kingsbury, A Mohamed, GE Dahl, G Saon, H Soltau, ...
2013 IEEE workshop on automatic speech recognition and understanding, 315-320, 2013
3112013
Deep neural network language models
E Arisoy, TN Sainath, B Kingsbury, B Ramabhadran
Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the …, 2012
3082012
Multilingual speech recognition with a single end-to-end model
S Toshniwal, TN Sainath, RJ Weiss, B Li, P Moreno, E Weinstein, K Rao
2018 IEEE international conference on acoustics, speech and signal …, 2018
2912018
An analysis of incorporating an external language model into a sequence-to-sequence model
A Kannan, Y Wu, P Nguyen, TN Sainath, Z Chen, R Prabhavalkar
2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018
2872018
Structured transforms for small-footprint deep learning
V Sindhwani, T Sainath, S Kumar
Advances in Neural Information Processing Systems 28, 2015
2852015
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20