Folgen
Stefan Hinterstoisser
Stefan Hinterstoisser
Industrial Perception
Bestätigte E-Mail-Adresse bei industrial-perception.com
Titel
Zitiert von
Zitiert von
Jahr
Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes
S Hinterstoisser, V Lepetit, S Ilic, S Holzer, G Bradski, K Konolige, ...
Computer Vision–ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon …, 2013
15232013
Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes
S Hinterstoisser, S Holzer, C Cagniart, S Ilic, K Konolige, N Navab, ...
2011 international conference on computer vision, 858-865, 2011
7872011
Gradient response maps for real-time detection of textureless objects
S Hinterstoisser, C Cagniart, S Ilic, P Sturm, N Navab, P Fua, V Lepetit
IEEE transactions on pattern analysis and machine intelligence 34 (5), 876-888, 2011
7612011
Dominant orientation templates for real-time detection of texture-less objects
S Hinterstoisser, V Lepetit, S Ilic, P Fua, N Navab
2010 IEEE Computer Society Conference on Computer Vision and Pattern …, 2010
3302010
On pre-trained image features and synthetic images for deep learning
S Hinterstoisser, V Lepetit, P Wohlhart, K Konolige
Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 0-0, 2018
3092018
Detection and reconstruction of an environment to facilitate robotic interaction with the environment
K Konolige, E Rublee, S Hinterstoisser, T Straszheim, G Bradski, ...
US Patent 9,102,055, 2015
2602015
Going further with point pair features
S Hinterstoisser, V Lepetit, N Rajkumar, K Konolige
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The …, 2016
2232016
Object pickup strategies for a robotic device
G Bradski, K Konolige, E Rublee, T Straszheim, H Strasdat, ...
US Patent 9,987,746, 2018
1782018
Multi-task domain adaptation for deep learning of instance grasping from simulation
K Fang, Y Bai, S Hinterstoisser, S Savarese, M Kalakrishnan
2018 IEEE International Conference on Robotics and Automation (ICRA), 3516-3523, 2018
1272018
An annotation saved is an annotation earned: Using fully synthetic training for object detection
S Hinterstoisser, O Pauly, H Heibel, M Martina, M Bokeloh
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
1022019
An industrial augmented reality solution for discrepancy check
P Georgel, P Schroeder, S Benhimane, S Hinterstoisser, M Appel, ...
2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality …, 2007
902007
Optimal local searching for fast and robust textureless 3D object tracking in highly cluttered backgrounds
BK Seo, H Park, JI Park, S Hinterstoisser, S Ilic
IEEE transactions on visualization and computer graphics 20 (1), 99-110, 2013
732013
Rapid selection of reliable templates for visual tracking
N Alt, S Hinterstoisser, N Navab
2010 IEEE Computer Society Conference on Computer Vision and Pattern …, 2010
662010
Continuous updating of plan for robotic object manipulation based on received sensor data
G Bradski, K Konolige, E Rublee, T Straszheim, H Strasdat, ...
US Patent 9,238,304, 2016
652016
Online learning of patch perspective rectification for efficient object detection
S Hinterstoisser, S Benhimane, N Navab, P Fua, V Lepetit
2008 IEEE Conference on Computer Vision and Pattern Recognition, 1-8, 2008
652008
Learning real-time perspective patch rectification
S Hinterstoisser, V Lepetit, S Benhimane, P Fua, N Navab
International Journal of Computer Vision 91, 107-130, 2011
622011
N3m: Natural 3d markers for real-time object detection and pose estimation
S Hinterstoisser, S Benhimane, N Navab
2007 IEEE 11th International Conference on Computer Vision, 1-7, 2007
592007
Distance transform templates for object detection and pose estimation
S Holzer, S Hinterstoisser, S Ilic, N Navab
2009 IEEE Conference on Computer Vision and Pattern Recognition, 1177-1184, 2009
542009
Real-time learning of accurate patch rectification
S Hinterstoisser, O Kutter, N Navab, P Fua, V Lepetit
2009 IEEE Conference on Computer Vision and Pattern Recognition, 2945-2952, 2009
502009
Object segmentation based on detected object-specific visual cues
S Hinterstoisser, K Konolige
US Patent 9,327,406, 2016
482016
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20