Marwin Züfle
Marwin Züfle
Doctoral Researcher, Chair of Software Engineering, University of Wuerzburg
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Telescope: a hybrid forecast method for univariate time series
M Züfle, A Bauer, N Herbst, V Curtef, S Kounev
International work-conference on Time Series (ITISE 2017), 2017
Autonomic forecasting method selection: examination and ways ahead
M Züfle, A Bauer, V Lesch, C Krupitzer, N Herbst, S Kounev, V Curtef
2019 IEEE International Conference on Autonomic Computing (ICAC), 167-176, 2019
Telescope: An Automatic Feature Extraction and Transformation Approach for Time Series Forecasting on a Level-Playing Field
A Bauer, M Züfle, N Herbst, S Kounev, V Curtef
2020 IEEE 36th International Conference on Data Engineering (ICDE), 1902-1905, 2020
To Fail or Not to Fail: Predicting Hard Disk Drive Failure Time Windows
M Züfle, C Krupitzer, F Erhard, J Grohmann, S Kounev
International Conference on Measurement, Modelling and Evaluation of …, 2020
A Survey on Human Machine Interaction in Industry 4.0
C Krupitzer, S Müller, V Lesch, M Züfle, J Edinger, A Lemken, D Schäfer, ...
arXiv preprint arXiv:2002.01025, 2020
Utilizing Clustering to Optimize Resource Demand Estimation Approaches
J Grohmann, S Eismann, A Bauer, M Züfle, N Herbst, S Kounev
2019 IEEE 4th International Workshops on Foundations and Applications of …, 2019
Dynamic Hybrid Forecasting for Self-Aware Systems
M Züfle
Master Thesis. Würzburg, Germany: Department of Computer Science …, 2017
An Automated Forecasting Framework based on Method Recommendation for Seasonal Time Series
A Bauer, M Züfle, J Grohmann, N Schmitt, N Herbst, S Kounev
Proceedings of the ACM/SPEC International Conference on Performance …, 2020
Time Series Forecasting for Self-Aware Systems
A Bauer, M Züfle, N Herbst, A Zehe, A Hotho, S Kounev
Proceedings of the IEEE, 2020
A Framework for Time Series Preprocessing and History-based Forecasting Method Recommendation
M Züfle, S Kounev
2020 15th Conference on Computer Science and Information Systems (FedCSIS …, 2020
A Survey on Predictive Maintenance for Industry 4.0
C Krupitzer, T Wagenhals, M Züfle, V Lesch, D Schäfer, A Mozaffarin, ...
arXiv preprint arXiv:2002.08224, 2020
Best Practices for Time Series Forecasting (Tutorial)
A Bauer, M Züfle, N Herbst, S Kounev
2019 IEEE 4th International Workshops on Foundations and Applications of …, 2019
Comparing Machine Learning Approaches for Multivariate Time Series Forecasting
D Otto, IS Kounev, M Züfle, A Bauer
Time Series Forecasting: A Recommendation for Method Selection
J Ort, IS Kounev, MSM Züfle, MSA Bauer
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–14