Folgen
Hui Jin
Hui Jin
UCLA Mathematics
Bestätigte E-Mail-Adresse bei ucla.edu
Titel
Zitiert von
Zitiert von
Jahr
Implicit bias of gradient descent for mean squared error regression with wide neural networks
H Jin, G Montúfar
Journal of Machine Learning Research 24, 1--97, 2023
342023
Learning curves for Gaussian process regression with power-law priors and targets
H Jin, PK Banerjee, G Montúfar
The Tenth International Conference on Learning Representations (ICLR 2022), 2022
152022
Characterizing the Spectrum of the NTK via a Power Series Expansion
M Murray, H Jin, B Bowman, G Montufar
The Eleventh International Conference on Learning Representations (ICLR 2023)., 2023
102023
Noisy Subgraph Isomorphisms on Multiplex Networks
H Jin, X He, Y Wang, H Li, AL Bertozzi
2019 IEEE International Conference on Big Data (Big Data), 4899-4905, 2019
102019
Towards understanding how transformer perform multi-step reasoning with matching operation
Z Wang, Y Wang, Z Zhang, Z Zhou, H Jin, T Hu, J Sun, Z Li, Y Zhang, ...
arXiv preprint arXiv:2405.15302, 2024
22024
Exact Conversion of In-Context Learning to Model Weights in Linearized-Attention Transformers
BK Chen, T Hu, H Jin, HK Lee, K Kawaguchi
arXiv preprint arXiv:2406.02847, 2024
2024
Generalization of Wide Neural Networks from the Perspective of Linearization and Kernel Learning
H Jin
University of California, Los Angeles, 2022
2022
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–7