Loic Matthey
Loic Matthey
DeepMind
Bestätigte E-Mail-Adresse bei google.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
beta-vae: Learning basic visual concepts with a constrained variational framework
I Higgins, L Matthey, A Pal, C Burgess, X Glorot, M Botvinick, S Mohamed, ...
10132016
Understanding disentangling in -VAE
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 2018
2182018
DARLA: Improving zero-shot transfer in reinforcement learning
I Higgins, A Pal, A Rusu, L Matthey, C Burgess, A Pritzel, M Botvinick, ...
Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017
1532017
Early visual concept learning with unsupervised deep learning
I Higgins, L Matthey, X Glorot, A Pal, B Uria, C Blundell, S Mohamed, ...
arXiv preprint arXiv:1606.05579, 2016
1162016
dSprites: Disentanglement testing Sprites dataset
L Matthey, I Higgins, D Hassabis, A Lerchner
https://github.com/deepmind/dsprites-dataset, 2017
792017
Stochastic strategies for a swarm robotic assembly system
L Matthey, S Berman, V Kumar
2009 IEEE International Conference on Robotics and Automation, 1953-1958, 2009
792009
SCAN: Learning hierarchical compositional visual concepts
I Higgins, N Sonnerat, L Matthey, A Pal, CP Burgess, M Bosnjak, ...
arXiv preprint arXiv:1707.03389, 2017
722017
A comparison of casting and spiraling algorithms for odor source localization in laminar flow
T Lochmatter, X Raemy, L Matthey, S Indra, A Martinoli
2008 IEEE International Conference on Robotics and Automation, 1138-1143, 2008
642008
Towards a definition of disentangled representations
I Higgins, D Amos, D Pfau, S Racaniere, L Matthey, D Rezende, ...
arXiv preprint arXiv:1812.02230, 2018
622018
MONet: Unsupervised Scene Decomposition and Representation
CP Burgess, L Matthey, N Watters, R Kabra, I Higgins, M Botvinick, ...
arXiv preprint arXiv:1901.11390, 2019
542019
Multi-Object Representation Learning with Iterative Variational Inference
K Greff, RL Kaufmann, R Kabra, N Watters, CP Burgess, Z Daniel, ...
arXiv preprint arXiv:1903.00450, 2019
532019
A probabilistic palimpsest model of visual short-term memory
L Matthey, PM Bays, P Dayan
PLoS Comput Biol 11 (1), e1004003, 2015
362015
Experimental study of limit cycle and chaotic controllers for the locomotion of centipede robots
L Matthey, L Righetti, AJ Ijspeert
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2008
362008
Life-long disentangled representation learning with cross-domain latent homologies
A Achille, T Eccles, L Matthey, C Burgess, N Watters, A Lerchner, ...
Advances in Neural Information Processing Systems, 9873-9883, 2018
342018
Spatial broadcast decoder: A simple architecture for learning disentangled representations in vaes
N Watters, L Matthey, CP Burgess, A Lerchner
arXiv preprint arXiv:1901.07017, 2019
212019
Aggregation-mediated collective perception and action in a group of miniature robots
G Mermoud, L Matthey, WC Evans, A Martinoli
Proceedings of the 9th International Conference on Autonomous Agents and …, 2010
202010
Cobra: Data-efficient model-based rl through unsupervised object discovery and curiosity-driven exploration
N Watters, L Matthey, M Bosnjak, CP Burgess, A Lerchner
arXiv preprint arXiv:1905.09275, 2019
112019
Unsupervised Model Selection for Variational Disentangled Representation Learning
S Duan, L Matthey, A Saraiva, N Watters, CP Burgess, A Lerchner, ...
arXiv preprint arXiv:1905.12614, 2019
32019
Probabilistic palimpsest memory: Multiplicity, binding and coverage in visual short-term memory
L Matthey, P Bays, P Dayan
COSYNE (p. III-48), 2012
22012
Spatial Broadcast Decoder: A Simple Architecture for Disentangled Representations in VAEs
N Watters, L Matthey, CP Burgess, A Lerchner
2019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20