Folgen
Javier Poyatos
Javier Poyatos
Bestätigte E-Mail-Adresse bei ugr.es
Titel
Zitiert von
Zitiert von
Jahr
Comprehensive taxonomies of nature-and bio-inspired optimization: Inspiration versus algorithmic behavior, critical analysis recommendations
D Molina, J Poyatos, JD Ser, S García, A Hussain, F Herrera
Cognitive Computation 12, 897-939, 2020
2252020
A prescription of methodological guidelines for comparing bio-inspired optimization algorithms
A LaTorre, D Molina, E Osaba, J Poyatos, J Del Ser, F Herrera
Swarm and Evolutionary Computation 67, 100973, 2021
1152021
Lights and shadows in evolutionary deep learning: Taxonomy, critical methodological analysis, cases of study, learned lessons, recommendations and challenges
AD Martinez, J Del Ser, E Villar-Rodriguez, E Osaba, J Poyatos, S Tabik, ...
Information Fusion 67, 161-194, 2021
482021
EvoPruneDeepTL: An evolutionary pruning model for transfer learning based deep neural networks
J Poyatos, D Molina, AD Martinez, J Del Ser, F Herrera
Neural Networks 158, 59-82, 2023
342023
General Purpose Artificial Intelligence Systems (GPAIS): Properties, definition, taxonomy, societal implications and responsible governance
I Triguero, D Molina, J Poyatos, J Del Ser, F Herrera
Information Fusion 103, 102135, 2024
322024
More is not always better: Insights from a massive comparison of meta-heuristic algorithms over real-parameter optimization problems
J Del Ser, E Osaba, AD Martinez, MN Bilbao, J Poyatos, D Molina, ...
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 1-7, 2021
122021
Multiobjective evolutionary pruning of Deep Neural Networks with Transfer Learning for improving their performance and robustness
J Poyatos, D Molina, A Martínez-Seras, J Del Ser, F Herrera
Applied Soft Computing 147, 110757, 2023
102023
General Purpose Artificial Intelligence Systems (GPAIS): Properties, Definition, Taxonomy, Open Challenges and Implications
I Triguero, D Molina, J Poyatos, J Del Ser, F Herrera
arXiv preprint arXiv:2307.14283, 2023
52023
A prescription of methodological guidelines for comparing bio-inspired optimization algorithms, swarm and evolutionary computation
A LaTorre, D Molina, E Osaba, J Poyatos, J Del Ser, F Herrera
52021
Nature-and bio-inspired optimization: The good, the bad, the ugly and the hopeful
D Molina Cabrera, J POYATOS AMADOR, E OSABA ICEDO, ...
DYNA Ingeniería e Industria, 2022
32022
Evolutionary Computation for the Design and Enrichment of General-Purpose Artificial Intelligence Systems: Survey and Prospects
J Poyatos, J Del Ser, S Garcia, H Ishibuchi, D Molina, I Triguero, B Xue, ...
arXiv preprint arXiv:2407.08745, 2024
2024
Metaheuristics for the Design of Deep Learning Models
J Poyatos Amador
Universidad de Granada, 2024
2024
EvoPruneDeepTL: An evolutionary pruning model for transfer learning based deep neural networks
J Poyatos Amador, D Molina Cabrera, AD Martínez, J Del Ser, ...
2023
Multiobjective evolutionary pruning of Deep Neural Networks with Transfer Learning for improving their performance and robustness
J Poyatos Amador, D Molina Cabrera, A Martínez-Seras, J Del Ser, ...
2023
Optimización inspirada en la naturaleza y en la biología: lo bueno, lo malo, lo feo y lo esperanzador
D Molina, J Poyatos, E Osaba, J Del Ser, F Herrera
DYNA 97 (2), 114-117, 2022
2022
Comprehensive Taxonomies of Nature-and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations
D Molina Cabrera, J Poyatos Amador, J Del Ser, S García López, ...
2020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–16