Follow
Elias Frantar
Elias Frantar
PhD Candidate, IST Austria
Verified email at ist.ac.at
Title
Cited by
Cited by
Year
GPTQ: Accurate post-training compression for generative pretrained transformers
E Frantar, S Ashkboos, T Hoefler, D Alistarh
arXiv preprint arXiv:2210.17323, 2022
141*2022
Sparsegpt: Massive language models can be accurately pruned in one-shot
E Frantar, D Alistarh
International Conference on Machine Learning, 10323-10337, 2023
67*2023
The optimal bert surgeon: Scalable and accurate second-order pruning for large language models
E Kurtic, D Campos, T Nguyen, E Frantar, M Kurtz, B Fineran, M Goin, ...
arXiv preprint arXiv:2203.07259, 2022
522022
Optimal brain compression: A framework for accurate post-training quantization and pruning
E Frantar, D Alistarh
Advances in Neural Information Processing Systems 35, 4475-4488, 2022
462022
M-FAC: Efficient matrix-free approximations of second-order information
E Frantar, E Kurtic, D Alistarh
Advances in Neural Information Processing Systems 34, 14873-14886, 2021
352021
On the sample complexity of adversarial multi-source PAC learning
N Konstantinov, E Frantar, D Alistarh, C Lampert
International Conference on Machine Learning, 5416-5425, 2020
232020
SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression
T Dettmers, R Svirschevski, V Egiazarian, D Kuznedelev, E Frantar, ...
arXiv preprint arXiv:2306.03078, 2023
182023
SPDY: Accurate pruning with speedup guarantees
E Frantar, D Alistarh
International Conference on Machine Learning, 6726-6743, 2022
172022
Ziplm: Hardware-aware structured pruning of language models
E Kurtic, E Frantar, D Alistarh
arXiv preprint arXiv:2302.04089, 2023
82023
L-greco: An efficient and general framework for layerwise-adaptive gradient compression
M Alimohammadi, I Markov, E Frantar, D Alistarh
arXiv preprint arXiv:2210.17357, 2022
42022
oViT: An Accurate Second-Order Pruning Framework for Vision Transformers
D Kuznedelev, E Kurtic, E Frantar, D Alistarh
arXiv preprint arXiv:2210.09223, 2022
22022
Towards End-to-end 4-Bit Inference on Generative Large Language Models
S Ashkboos, I Markov, E Frantar, T Zhong, X Wang, J Ren, T Hoefler, ...
arXiv preprint arXiv:2310.09259, 2023
12023
Sparse Finetuning for Inference Acceleration of Large Language Models
E Kurtic, D Kuznedelev, E Frantar, M Goin, D Alistarh
arXiv preprint arXiv:2310.06927, 2023
12023
Scaling laws for sparsely-connected foundation models
E Frantar, C Riquelme, N Houlsby, D Alistarh, U Evci
arXiv preprint arXiv:2309.08520, 2023
12023
CAP: Correlation-Aware Pruning for Highly-Accurate Sparse Vision Models
D Kuznedelev, E Kurtic, E Frantar, D Alistarh
Thirty-seventh Conference on Neural Information Processing Systems, 2023
2023
QMoE: Practical Sub-1-Bit Compression of Trillion-Parameter Models
E Frantar, D Alistarh
arXiv preprint arXiv:2310.16795, 2023
2023
Accurate Neural Network Pruning Requires Rethinking Sparse Optimization
D Kuznedelev, E Kurtic, E Iofinova, E Frantar, A Peste, D Alistarh
arXiv preprint arXiv:2308.02060, 2023
2023
QIGen: Generating Efficient Kernels for Quantized Inference on Large Language Models
T Pegolotti, E Frantar, D Alistarh, M Püschel
arXiv preprint arXiv:2307.03738, 2023
2023
JaxPruner: A concise library for sparsity research
JH Lee, W Park, N Mitchell, J Pilault, J Obando-Ceron, HB Kim, N Lee, ...
arXiv preprint arXiv:2304.14082, 2023
2023
Vision Models Can Be Efficiently Specialized via Few-Shot Task-Aware Compression
D Kuznedelev, S Tabesh, K Noorbakhsh, E Frantar, S Beery, E Kurtic, ...
arXiv preprint arXiv:2303.14409, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–20