Julian Zimmert
Julian Zimmert
Bestätigte E-Mail-Adresse bei di.ku.dk
Titel
Zitiert von
Zitiert von
Jahr
An optimal algorithm for stochastic and adversarial bandits
J Zimmert, Y Seldin
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
512019
Beating stochastic and adversarial semi-bandits optimally and simultaneously
J Zimmert, H Luo, CY Wei
International Conference on Machine Learning, 7683-7692, 2019
332019
Model selection in contextual stochastic bandit problems
A Pacchiano, M Phan, Y Abbasi-Yadkori, A Rao, J Zimmert, T Lattimore, ...
arXiv preprint arXiv:2003.01704, 2020
182020
Safe screening for support vector machines
J Zimmert, CS de Witt, G Kerg, M Kloft
NIPS 2015 Workshop on Optimization in Machine Learning (OPT), 2015
142015
Connections between mirror descent, thompson sampling and the information ratio
J Zimmert, T Lattimore
arXiv preprint arXiv:1905.11817, 2019
122019
An optimal algorithm for adversarial bandits with arbitrary delays
J Zimmert, Y Seldin
International Conference on Artificial Intelligence and Statistics, 3285-3294, 2020
112020
Distributed optimization of multi-class SVMs
M Alber, J Zimmert, U Dogan, M Kloft
PloS one 12 (6), e0178161, 2017
112017
An optimal algorithm for stochastic and adversarial bandits
J Zimmert, Y Seldin
arXiv preprint arXiv:1807.07623, 2018
102018
Factored bandits
J Zimmert, Y Seldin
arXiv preprint arXiv:1807.01488, 2018
82018
Adapting to Misspecification in Contextual Bandits
DJ Foster, C Gentile, M Mohri, J Zimmert
Advances in Neural Information Processing Systems 33, 2020
72020
Tsallis-INF: An Optimal Algorithm for Stochastic and Adversarial Bandits.
J Zimmert, Y Seldin
J. Mach. Learn. Res. 22, 28:1-28:49, 2021
62021
Online Learning for Active Cache Synchronization
A Kolobov, S Bubeck, J Zimmert
International Conference on Machine Learning, 5371-5380, 2020
12020
Adversarially robust stochastic multi-armed bandits
J Zimmert
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–13