Folgen
Michal Valko
Michal Valko
Google DeepMind Paris & Inria France & ENS MVA
Bestätigte E-Mail-Adresse bei deepmind.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Bootstrap your own latent: A new approach to self-supervised learning
JB Grill, F Strub, F Altché, C Tallec, PH Richemond, E Buchatskaya, ...
Neural Information Processing Systems, 2020
34322020
Finite-time analysis of kernelised contextual bandits
M Valko, N Korda, R Munos, I Flaounas, N Cristianini
Uncertainty in Artificial Intelligence, 2013
2122013
Large-scale representation learning on graphs via bootstrapping
S Thakoor, C Tallec, MG Azar, R Munos, P Veličković, M Valko
International Conference on Learning Representations, 2022
157*2022
Outlier detection for patient monitoring and alerting
M Hauskrecht, I Batal, M Valko, S Visweswaran, GF Cooper, G Clermont
Journal of Biomedical Informatics, 2013
1562013
Stochastic simultaneous optimistic optimization
M Valko, A Carpentier, R Munos
International Conference on Machine Learning, 2013
1252013
Online influence maximization under independent cascade model with semi-bandit feedback
Z Wen, B Kveton, M Valko, S Vaswani
Neural Information Processing Systems, 2017
124*2017
Spectral bandits for smooth graph functions
M Valko, R Munos, B Kveton, T Kocák
International Conference on Machine Learning, 2014
1122014
Efficient learning by implicit exploration in bandit problems with side observations
T Kocák, G Neu, M Valko, R Munos
Neural Information Processing Systems, 2014
1112014
Black-box optimization of noisy functions with unknown smoothness
JB Grill, M Valko, R Munos
Neural Information Processing Systems, 2015
972015
Broaden your views for self-supervised video learning
A Recasens, P Luc, JB Alayrac, L Wang, F Strub, C Tallec, M Malinowski, ...
International Conference on Computer Vision, 2021
872021
Simple regret for infinitely many armed bandits
A Carpentier, M Valko
International Conference on Machine Learning, 2015
832015
Episodic reinforcement learning in finite MDPs: Minimax lower bounds revisited
O Darwiche Domingues, P Ménard, E Kaufmann, M Valko
Algorithmic Learning Theory, 2021
762021
Gaussian process optimization with adaptive sketching: Scalable and no regret
D Calandriello, L Carratino, A Lazaric, M Valko, L Rosasco
Conference on Learning Theory, 2019
662019
BYOL works even without batch statistics
PH Richemond, JB Grill, F Altché, C Tallec, F Strub, A Brock, S Smith, ...
NeurIPS 2020 Workshop: Self-Supervised Learning - Theory and Practice, 2020
632020
Adaptive reward-free exploration
E Kaufmann, P Ménard, OD Domingues, A Jonsson, E Leurent, M Valko
Algorithmic Learning Theory, 2021
612021
Conditional outlier detection for clinical alerting
M Hauskrecht, M Valko, I Batal, G Clermont, S Visweswaran, GF Cooper
AMIA annual symposium proceedings 2010, 286, 2010
612010
Evidence-based anomaly detection in clinical domains
M Hauskrecht, M Valko, B Kveton, S Visweswaran, GF Cooper
AMIA Annual Symposium Proceedings 2007, 319, 2007
572007
Monte-Carlo tree search as regularized policy optimization
JB Grill, F Altché, Y Tang, T Hubert, M Valko, I Antonoglou, R Munos
International Conference on Machine Learning, 2020
532020
Gamification of pure exploration for linear bandits
R Degenne, P Ménard, X Shang, M Valko
International Conference on Machine Learning, 2020
522020
Bayesian policy gradient and actor-critic algorithms
M Ghavamzadeh, Y Engel, M Valko
Journal of Machine Learning Research 17 (66), 1-53, 2016
52*2016
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20