A simple unified framework for detecting out-of-distribution samples and adversarial attacks K Lee, K Lee, H Lee, J Shin Advances in neural information processing systems 31, 2018 | 2211 | 2018 |
Training confidence-calibrated classifiers for detecting out-of-distribution samples K Lee, H Lee, K Lee, J Shin arXiv preprint arXiv:1711.09325, 2017 | 1035 | 2017 |
Csi: Novelty detection via contrastive learning on distributionally shifted instances J Tack, S Mo, J Jeong, J Shin Advances in neural information processing systems 33, 11839-11852, 2020 | 656 | 2020 |
Learning from failure: De-biasing classifier from biased classifier J Nam, H Cha, S Ahn, J Lee, J Shin Advances in Neural Information Processing Systems 33, 20673-20684, 2020 | 438 | 2020 |
Co2l: Contrastive continual learning H Cha, J Lee, J Shin Proceedings of the IEEE/CVF International conference on computer vision …, 2021 | 364 | 2021 |
Regularizing class-wise predictions via self-knowledge distillation S Yun, J Park, K Lee, J Shin Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 343 | 2020 |
Network adiabatic theorem: an efficient randomized protocol for contention resolution S Rajagopalan, D Shah, J Shin ACM SIGMETRICS performance evaluation review 37 (1), 133-144, 2009 | 299 | 2009 |
M2m: Imbalanced classification via major-to-minor translation J Kim, J Jeong, J Shin Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 263 | 2020 |
Overcoming catastrophic forgetting with unlabeled data in the wild K Lee, K Lee, J Shin, H Lee Proceedings of the IEEE/CVF International Conference on Computer Vision, 312-321, 2019 | 256 | 2019 |
Freeze the discriminator: a simple baseline for fine-tuning gans S Mo, M Cho, J Shin arXiv preprint arXiv:2002.10964, 2020 | 250 | 2020 |
Neural adaptive content-aware internet video delivery H Yeo, Y Jung, J Kim, J Shin, D Han 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI …, 2018 | 225 | 2018 |
Network randomization: A simple technique for generalization in deep reinforcement learning K Lee, K Lee, J Shin, H Lee arXiv preprint arXiv:1910.05396, 2019 | 222 | 2019 |
Self-supervised label augmentation via input transformations H Lee, SJ Hwang, J Shin International Conference on Machine Learning, 5714-5724, 2020 | 219 | 2020 |
Instagan: Instance-aware image-to-image translation S Mo, M Cho, J Shin arXiv preprint arXiv:1812.10889, 2018 | 211 | 2018 |
Generating videos with dynamics-aware implicit generative adversarial networks S Yu, J Tack, S Mo, H Kim, J Kim, JW Ha, J Shin arXiv preprint arXiv:2202.10571, 2022 | 204 | 2022 |
Distribution aligning refinery of pseudo-label for imbalanced semi-supervised learning J Kim, Y Hur, S Park, E Yang, SJ Hwang, J Shin Advances in neural information processing systems 33, 14567-14579, 2020 | 197 | 2020 |
Layer-adaptive sparsity for the magnitude-based pruning J Lee, S Park, S Mo, S Ahn, J Shin arXiv preprint arXiv:2010.07611, 2020 | 194 | 2020 |
Offline-to-online reinforcement learning via balanced replay and pessimistic q-ensemble S Lee, Y Seo, K Lee, P Abbeel, J Shin Conference on Robot Learning, 1702-1712, 2022 | 186 | 2022 |
Learning what and where to transfer Y Jang, H Lee, SJ Hwang, J Shin International conference on machine learning, 3030-3039, 2019 | 177 | 2019 |
Distributed random access algorithm: scheduling and congestion control L Jiang, D Shah, J Shin, J Walrand IEEE Transactions on Information Theory 56 (12), 6182-6207, 2010 | 162 | 2010 |