Sandra Iglesias
Sandra Iglesias
Translational Neuromodeling Unit (TNU), University of Zurich & ETH Zurich
Bestätigte E-Mail-Adresse bei
Zitiert von
Zitiert von
Hierarchical prediction errors in midbrain and basal forebrain during sensory learning
S Iglesias, C Mathys, KH Brodersen, L Kasper, M Piccirelli, ...
Neuron 80 (2), 519-530, 2013
Uncertainty in perception and the Hierarchical Gaussian Filter
CD Mathys, EI Lomakina, J Daunizeau, S Iglesias, KH Brodersen, ...
Frontiers in human neuroscience 8, 825, 2014
The PhysIO toolbox for modeling physiological noise in fMRI data
L Kasper, S Bollmann, AO Diaconescu, C Hutton, J Heinzle, S Iglesias, ...
Journal of neuroscience methods 276, 56-72, 2017
Translational perspectives for computational neuroimaging
KE Stephan, S Iglesias, J Heinzle, AO Diaconescu
Neuron 87 (4), 716-732, 2015
Models of neuromodulation for computational psychiatry
S Iglesias, S Tomiello, M Schneebeli, KE Stephan
Wiley Interdisciplinary Reviews: Cognitive Science 8 (3), e1420, 2017
Multi-site reproducibility of prefrontal–hippocampal connectivity estimates by stochastic DCM
D Bernal-Casas, E Balaguer-Ballester, MF Gerchen, S Iglesias, H Walter, ...
Neuroimage 82, 555-563, 2013
Modulation of midbrain neurocircuitry by intranasal insulin
SE Thanarajah, S Iglesias, B Kuzmanovic, L Rigoux, KE Stephan, ...
NeuroImage 194, 120-127, 2019
Bayesian inference, dysconnectivity and neuromodulation in schizophrenia
KE Stephan, AO Diaconescu, S Iglesias
Brain 139 (7), 1874-1876, 2016
A computational theory of mindfulness based cognitive therapy from the “bayesian brain” perspective
ZM Manjaly, S Iglesias
Frontiers in Psychiatry 11, 404, 2020
Computational modeling of perceptual inference: A hierarchical Bayesian approach that allows for individual and contextual differences in weighting of input
C Mathys, J Daunizeau, S Iglesias, AO Diaconescu, LAE Weber, ...
International Journal of Psychophysiology 3 (85), 317-318, 2012
Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning
S Iglesias, L Kasper, SJ Harrison, R Manka, C Mathys, KE Stephan
NeuroImage 226, 117590, 2021
TAPAS: an open-source software package for Translational Neuromodeling and Computational Psychiatry
S Frässle, EA Aponte, S Bollmann, KH Brodersen, CT Do, OK Harrison, ...
Frontiers in Psychiatry 12, 857, 2021
A Hilbert-based method for processing respiratory timeseries
SJ Harrison, S Bianchi, J Heinzle, KE Stephan, S Iglesias, L Kasper
NeuroImage 230, 117787, 2021
Effects of hunger, satiety and oral glucose on effective connectivity between hypothalamus and insular cortex
A Al-Zubaidi, S Iglesias, KE Stephan, M Buades-Rotger, M Heldmann, ...
NeuroImage 217, 116931, 2020
F157. Hierarchical prediction errors during auditory mismatch under pharmacological manipulations: a computational single-trial EEG analysis
L Weber, A Diaconescu, S Tomiello, D Schöbi, S Iglesias, C Mathys, ...
Schizophrenia Bulletin 44 (Suppl 1), S281, 2018
Interoception of breathing and its relationship with anxiety
OK Harrison, L Nanz, S Marino, R Lüchinger, F Hennel, AJ Hess, ...
bioRxiv, 2021
S23. Introducing COMPASS: Comparing brain activity across patients with differential treatment response in schizophrenia–an observational study
S Iglesias, J Siemerkus, M Bischof, S Tomiello, D Schöbi, L Weber, ...
Schizophrenia Bulletin 44 (suppl_1), S331-S332, 2018
Inferring effective connectivity from fMRI data
KE Stephan, B Li, S Iglesias, KJ Friston
fMRI: From Nuclear Spins to Brain Functions, 365-386, 2015
Dynamical causal modeling reveals modulation of prefrontal–hippocampal connectivity by a genomewide significant schizophrenia variant
D Bernal-Casas, E Balaguer-Ballester, MF Gerchen, S Iglesias, H Walter, ...
Front. Comput. Neurosci. Conference Abstract: Bernstein Conference, 2012
Parameter estimation in a Bayesian hierarchical model of learning: A comparison of four methods
C Mathys, EI Lomakina, J Daunizeau, S Iglesias, KE Stephan
18th Annual Meeting of the Organization for Human Brain Mapping (OHBM 2012), 2012
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20