Kevin K. Yang
Kevin K. Yang
Microsoft Research
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
Machine-learning-guided directed evolution for protein engineering
KK Yang, Z Wu, FH Arnold
Nature methods, 1, 2019
Learned protein embeddings for machine learning
KK Yang, Z Wu, CN Bedbrook, FH Arnold
Bioinformatics 34 (15), 2642-2648, 2018
Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics
CN Bedbrook, KK Yang, JE Robinson, ED Mackey, V Gradinaru, ...
Nature methods 16 (11), 1176-1184, 2019
Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization
CN Bedbrook, KK Yang, AJ Rice, V Gradinaru, FH Arnold
PLoS computational biology 13 (10), e1005786, 2017
Protein sequence design with deep generative models
Z Wu, KE Johnston, FH Arnold, KK Yang
Current opinion in chemical biology 65, 18-27, 2021
Signal peptides generated by attention-based neural networks
Z Wu, KK Yang, MJ Liszka, A Lee, A Batzilla, D Wernick, DP Weiner, ...
ACS Synthetic Biology 9 (8), 2154-2161, 2020
Learned embeddings from deep learning to visualize and predict protein sets
C Dallago, K Schütze, M Heinzinger, T Olenyi, M Littmann, AX Lu, ...
Current Protocols 1 (5), e113, 2021
Evolutionary velocity with protein language models predicts evolutionary dynamics of diverse proteins
BL Hie, KK Yang, PS Kim
Cell Systems 13 (4), 274-285. e6, 2022
Structure-guided SCHEMA recombination generates diverse chimeric channelrhodopsins
CN Bedbrook, AJ Rice, KK Yang, X Ding, S Chen, EM LeProust, ...
Proceedings of the National Academy of Sciences 114 (13), E2624-E2633, 2017
Adaptive machine learning for protein engineering
BL Hie, KK Yang
Current opinion in structural biology 72, 145-152, 2022
FLIP: Benchmark tasks in fitness landscape inference for proteins
C Dallago, J Mou, KE Johnston, BJ Wittmann, N Bhattacharya, S Goldman, ...
bioRxiv, 2021.11. 09.467890, 2021
The Generation of Thermostable Fungal Laccase Chimeras by SCHEMA-RASPP Structure-Guided Recombination in Vivo
I Mateljak, A Rice, K Yang, T Tron, M Alcalde
ACS Synthetic Biology 8 (4), 833-843, 2019
Protein structure generation via folding diffusion
KE Wu, KK Yang, R van den Berg, J Zou, AX Lu, AP Amini
Convolutions are competitive with transformers for protein sequence pretraining
KK Yang, N Fusi, AX Lu
bioRxiv, 2022.05. 19.492714, 2022
Machine learning modeling of family wide enzyme-substrate specificity screens
S Goldman, R Das, KK Yang, CW Coley
PLoS computational biology 18 (2), e1009853, 2022
Batched Stochastic Bayesian Optimization via Combinatorial Constraints Design
KK Yang, Y Chen, A Lee, Y Yue
arXiv preprint arXiv:1904.08102, 2019
Masked inverse folding with sequence transfer for protein representation learning
KK Yang, N Zanichelli, H Yeh
bioRxiv, 2022.05. 25.493516, 2022
Exploring evolution-based &-free protein language models as protein function predictors
M Hu, F Yuan, KK Yang, F Ju, J Su, H Wang, F Yang, Q Ding
arXiv preprint arXiv:2206.06583, 2022
A topological data analytic approach for discovering biophysical signatures in protein dynamics
WS Tang, GM da Silva, H Kirveslahti, E Skeens, B Feng, T Sudijono, ...
PLoS computational biology 18 (5), e1010045, 2022
Benchmarking uncertainty quantification for protein engineering
KP Greenman, AP Amini, KK Yang
bioRxiv, 2023.04. 17.536962, 2023
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20