Architecture and design of the heuristiclab optimization environment S Wagner, G Kronberger, A Beham, M Kommenda, A Scheibenpflug, ... Advanced Methods and Applications in Computational Intelligence, 197-261, 2014 | 124 | 2014 |
Effects of constant optimization by nonlinear least squares minimization in symbolic regression M Kommenda, G Kronberger, S Winkler, M Affenzeller, S Wagner Proceedings of the 15th annual conference companion on Genetic and …, 2013 | 59 | 2013 |
Using FE calculations and data-based system identification techniques to model the nonlinear behavior of PMSMs G Bramerdorfer, SM Winkler, M Kommenda, G Weidenholzer, S Silber, ... IEEE Transactions on Industrial Electronics 61 (11), 6454-6462, 2014 | 48 | 2014 |
Advanced Methods and Applications in Computational Intelligence, volume 6 of Topics in Intelligent Engineering and Informatics, chapter Architecture and Design of the … S Wagner, G Kronberger, A Beham, M Kommenda, A Scheibenpflug, ... Springer 53 (55), 197-261, 2014 | 43 | 2014 |
Macro-economic time series modeling and interaction networks G Kronberger, S Fink, M Kommenda, M Affenzeller European Conference on the Applications of Evolutionary Computation, 101-110, 2011 | 35 | 2011 |
Gaining deeper insights in symbolic regression M Affenzeller, SM Winkler, G Kronberger, M Kommenda, B Burlacu, ... Genetic Programming Theory and Practice XI, 175-190, 2014 | 30 | 2014 |
Parameter identification for symbolic regression using nonlinear least squares M Kommenda, B Burlacu, G Kronberger, M Affenzeller Genetic Programming and Evolvable Machines 21 (3), 471-501, 2020 | 28 | 2020 |
HeuristicLab 3.3: A unified approach to metaheuristic optimization S Wagner, A Beham, G Kronberger, M Kommenda, E Pitzer, M Kofler, ... Actas del séptimo congreso español sobre Metaheurísticas, Algoritmos …, 2010 | 23 | 2010 |
Visualization of genetic lineages and inheritance information in genetic programming B Burlacu, M Affenzeller, M Kommenda, S Winkler, G Kronberger Proceedings of the 15th annual conference companion on Genetic and …, 2013 | 22 | 2013 |
On the architecture and implementation of tree-based genetic programming in HeuristicLab M Kommenda, G Kronberger, S Wagner, S Winkler, M Affenzeller Proceedings of the 14th annual conference companion on Genetic and …, 2012 | 22 | 2012 |
Evolution of covariance functions for gaussian process regression using genetic programming G Kronberger, M Kommenda International Conference on Computer Aided Systems Theory, 308-315, 2013 | 21 | 2013 |
Evolving simple symbolic regression models by multi-objective genetic programming M Kommenda, G Kronberger, M Affenzeller, SM Winkler, B Burlacu Genetic Programming Theory and Practice XIII, 1-19, 2016 | 20 | 2016 |
Extended Regression Models for Predicting the Pumping Capability and Viscous Dissipation of Two-Dimensional Flows in Single-Screw Extrusion W Roland, M Kommenda, C Marschik, J Miethlinger Polymers 11 (2), 334, 2019 | 16 | 2019 |
Contemporary Symbolic Regression Methods and their Relative Performance W La Cava, P Orzechowski, B Burlacu, FO de França, M Virgolin, Y Jin, ... arXiv preprint arXiv:2107.14351, 2021 | 14 | 2021 |
Optimization strategies for integrated knapsack and traveling salesman problems A Beham, J Fechter, M Kommenda, S Wagner, SM Winkler, M Affenzeller International Conference on Computer Aided Systems Theory, 359-366, 2015 | 13 | 2015 |
PRIMOS: An Integrated Database of Reassessed Protein–Protein Interactions Providing Web-Based Access to In Silico Validation of Experimentally Derived Data R Rid, W Strasser, D Siegl, C Frech, M Kommenda, T Kern, H Hintner, ... Assay and drug development technologies 11 (5), 333-346, 2013 | 13 | 2013 |
Simulation-Based Optimization with HeuristicLab: Practical Guidelines and Real-World Applications M Affenzeller, A Beham, S Vonolfen, E Pitzer, SM Winkler, S Hutterer, ... Applied Simulation and Optimization, 3-38, 2015 | 12 | 2015 |
Prediction of stress-strain curves for aluminium alloys using symbolic regression E Kabliman, AH Kolody, M Kommenda, G Kronberger AIP Conference Proceedings 2113 (1), 180009, 2019 | 11 | 2019 |
Using robust generalized fuzzy modeling and enhanced symbolic regression to model tribological systems G Kronberger, M Kommenda, E Lughofer, S Saminger-Platz, ... Applied Soft Computing 69, 610-624, 2018 | 11 | 2018 |
Sliding window symbolic regression for detecting changes of system dynamics SM Winkler, M Affenzeller, G Kronberger, M Kommenda, B Burlacu, ... Genetic Programming Theory and Practice XII, 91-107, 2015 | 11 | 2015 |