Folgen
Stephan Günnemann
Stephan Günnemann
Professor of Computer Science, Technical University of Munich
Bestätigte E-Mail-Adresse bei in.tum.de - Startseite
Titel
Zitiert von
Zitiert von
Jahr
ChatGPT for good? On opportunities and challenges of large language models for education
E Kasneci, K Seßler, S Küchemann, M Bannert, D Dementieva, F Fischer, ...
Learning and individual differences 103, 102274, 2023
19692023
Predict then propagate: Graph neural networks meet personalized pagerank
J Gasteiger, A Bojchevski, S Günnemann
International Conference on Learning Representations (ICLR), 2019
1850*2019
Pitfalls of graph neural network evaluation
O Shchur, M Mumme, A Bojchevski, S Günnemann
Relational Representation Learning Workshop, NeurIPS, 2018
12212018
Adversarial attacks on neural networks for graph data
D Zügner, A Akbarnejad, S Günnemann
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining …, 2018
10472018
Directional message passing for molecular graphs
J Gasteiger, J Groß, S Günnemann
International Conference on Learning Representations (ICLR), 2020
8092020
Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Ranking
A Bojchevski, S Günnemann
International Conference on Learning Representations (ICLR), 2018
7022018
Diffusion improves graph learning
J Gasteiger, S Weißenberger, S Günnemann
Neural Information Processing Systems (NeurIPS), 2019
6352019
Adversarial Attacks on Graph Neural Networks via Meta Learning
D Zügner, S Günnemann
International Conference on Learning Representations (ICLR), 2019
621*2019
Netgan: Generating graphs via random walks
A Bojchevski, O Shchur, D Zügner, S Günnemann
International Conference on Machine Learning (ICML), 2018
4222018
Gemnet: Universal directional graph neural networks for molecules
J Gasteiger, F Becker, S Günnemann
Advances in Neural Information Processing Systems 34, 6790-6802, 2021
394*2021
Evaluating clustering in subspace projections of high dimensional data
E Müller, S Günnemann, I Assent, T Seidl
Proceedings of the VLDB Endowment 2 (1), 1270-1281, 2009
3632009
Failing loudly: An empirical study of methods for detecting dataset shift
S Rabanser, S Günnemann, ZC Lipton
Neural Information Processing Systems (NeurIPS), 2018
3542018
Adversarial attacks on node embeddings via graph poisoning
A Bojchevski, S Günnemann
International Conference on Machine Learning (ICML), 695-704, 2019
3382019
Fast and uncertainty-aware directional message passing for non-equilibrium molecules
J Gasteiger, S Giri, JT Margraf, S Günnemann
Machine Learning for Molecules Workshop, NeurIPS, 2020
3152020
Scaling graph neural networks with approximate pagerank
A Bojchevski, J Gasteiger, B Perozzi, A Kapoor, M Blais, B Rózemberczki, ...
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge …, 2020
2702020
Introduction to tensor decompositions and their applications in machine learning
S Rabanser, O Shchur, S Günnemann
arXiv preprint arXiv:1711.10781, 2017
2652017
3d infomax improves gnns for molecular property prediction
H Stärk, D Beaini, G Corso, P Tossou, C Dallago, S Günnemann, P Liò
International Conference on Machine Learning, 20479-20502, 2022
1852022
On using class-labels in evaluation of clusterings
I Färber, S Günnemann, HP Kriegel, P Kröger, E Müller, E Schubert, ...
MultiClust: 1st international workshop on discovering, summarizing and using …, 2010
1702010
Certifiable robustness and robust training for graph convolutional networks
D Zügner, S Günnemann
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge …, 2019
1632019
Mining coherent subgraphs in multi-layer graphs with edge labels
B Boden, S Günnemann, H Hoffmann, T Seidl
Proceedings of the 18th ACM SIGKDD international conference on Knowledge …, 2012
1592012
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20