Statistical properties of simple types M Moczurad, J Tyszkiewicz, M Zaionc
Mathematical Structures in Computer Science 10 (5), 575-594, 2000
59 2000 Asymptotically almost all\lambda-terms are strongly normalizing R David, K Grygiel, J Kozik, C Raffalli, G Theyssier, M Zaionc
Logical Methods in Computer Science 9, 2013
52 2013 Statistics of intuitionistic versus classical logics Z Kostrzycka, M Zaionc
Studia Logica 76, 307-328, 2004
41 2004 Classical and intuitionistic logic are asymptotically identical H Fournier, D Gardy, A Genitrini, M Zaionc
Computer Science Logic: 21st International Workshop, CSL 2007, 16th Annual …, 2007
40 2007 On the Asymptotic Density of Tautologies in Logic of Implication and Negation. M Zaionc
Reports Math. Log. 39, 67-87, 2005
36 2005 Word operation definable in the typed λ-calculus M Zaionc
Theoretical computer science 52 (1-2), 1-14, 1987
35 1987 Intuitionistic vs. classical tautologies, quantitative comparison A Genitrini, J Kozik, M Zaionc
Types for Proofs and Programs: International Conference, TYPES 2007 …, 2008
29 2008 A natural counting of lambda terms M Bendkowski, K Grygiel, P Lescanne, M Zaionc
International Conference on Current Trends in Theory and Practice of …, 2016
25 2016 How big is BCI fragment of BCK logic K Grygiel, PM Idziak, M Zaionc
Journal of Logic and Computation 23 (3), 673-691, 2013
22 2013 The set of unifiers in typed λ-calculus as regular expression M Zaionc
International Conference on Rewriting Techniques and Applications, 430-440, 1985
21 1985 Probability distribution for simple tautologies M Zaionc
Theoretical Computer Science 355 (2), 243-260, 2006
20 2006 Combinatorics of -terms: a natural approach M Bendkowski, K Grygiel, P Lescanne, M Zaionc
Journal of Logic and Computation 27 (8), 2611-2630, 2017
18 2017 Some properties of random lambda terms R David, C Raffalli, G Theyssier, K Grygiel, J Kozic, M Zaionc
18 2009 λ-definability on free algebras M Zaionc
Annals of Pure and Applied Logic 51 (3), 279-300, 1991
15 1991 Mechanical procedure for proof construction via closed terms in typed λ calculus M Zaionc
Journal of Automated Reasoning 4, 173-190, 1988
15 1988 Asymptotic densities in logic and type theory Z Kostrzycka, M Zaionc
Studia Logica 88, 385-403, 2008
11 2008 On the likelihood of normalization in combinatory logic M Bendkowski, K Grygiel, M Zaionc
Journal of Logic and Computation 27 (7), 2251-2269, 2017
10 2017 The regular expression descriptions of unifier set in the typed λ-calculus M Zaionc
Fundamenta Informaticae 10 (3), 309-322, 1987
10 1987 Fixpoint technique for counting terms in typed lambda calculus M Zaionc
Department of Computer Science, State University of New York at Buffalo, 1995
9 * 1995 A characterization of lambda definable tree operations M Zaionc
Information and Computation 89 (1), 35-46, 1990
9 1990