Günter Klambauer
Günter Klambauer
Researcher, LIT AI Lab & Institute for Machine Learning, Johannes Kepler University
Verified email at bioinf.jku.at
Title
Cited by
Cited by
Year
Self-Normalizing Neural Networks
G Klambauer, T Unterthiner, A Mayr, S Hochreiter
Advances in Neural Information Processing Systems 30, 972--981, 2017
9062017
DeepTox: toxicity prediction using deep learning
A Mayr, G Klambauer, T Unterthiner, S Hochreiter
Frontiers in Environmental Science 3, 80, 2016
3082016
cn. MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate
G Klambauer, K Schwarzbauer, A Mayr, DA Clevert, A Mitterecker, ...
Nucleic acids research 40 (9), e69, 2012
2962012
Deep learning as an opportunity in virtual screening
T Unterthiner, A Mayr, G Klambauer, M Steijaert, JK Wegner, ...
Deep Learning and Representation Learning Workshop, NIPS 2014, 2014
1282014
Large-scale comparison of machine learning methods for drug target prediction on ChEMBL
A Mayr, G Klambauer, T Unterthiner, M Steijaert, JK Wegner, ...
Chemical science 9 (24), 5441-5451, 2018
1132018
Prediction of human population responses to toxic compounds by a collaborative competition
F Eduati, LM Mangravite, T Wang, H Tang, S Hochreiter, G Klambauer, ...
Nature biotechnology, 2015
842015
How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology
C Wittwehr, H Aladjov, G Ankley, HJ Byrne, J de Knecht, E Heinzle, ...
Toxicological Sciences 155 (2), 326-336, 2017
802017
DeepSynergy: predicting anti-cancer drug synergy with Deep Learning
K Preuer, RPI Lewis, S Hochreiter, A Bender, KC Bulusu, G Klambauer
Bioinformatics 34 (9), 1538-1546, 2018
792018
Repurposed high-throughput image assays enables biological activity prediction for drug discovery
J Simm, G Klambauer, A Arany, M Steijaert, JK Wegner, E Gustin, ...
Cell Chemical Biology, 108399, 2018
682018
Toxicity prediction using deep learning
T Unterthiner, A Mayr, G Klambauer, S Hochreiter
arXiv preprint arXiv:1503.01445, 2015
662015
Using transcriptomics to guide lead optimization in drug discovery projects
G Klambauer, B Verbist, L Vervoort, W Talloen, TheQSTARConsortium, ...
Drug Discovery Today 20 (5), 505–513, 2015
55*2015
Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery
K Preuer, P Renz, T Unterthiner, S Hochreiter, G Klambauer
Journal of chemical information and modeling 58 (9), 1736-1741, 2018
452018
Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery
K Preuer, P Renz, T Unterthiner, S Hochreiter, G Klambauer
Journal of chemical information and modeling 58 (9), 1736-1741, 2018
452018
Coulomb GANs: Provably optimal nash equilibria via potential fields
T Unterthiner, B Nessler, C Seward, G Klambauer, M Heusel, ...
arXiv preprint arXiv:1708.08819, 2017
432017
Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks
M Hofmarcher, E Rumetshofer, DA Clevert, S Hochreiter, G Klambauer
Journal of chemical information and modeling 59 (3), 1163-1171, 2019
29*2019
panelcn. MOPS: Copy‐number detection in targeted NGS panel data for clinical diagnostics
G Povysil, A Tzika, J Vogt, V Haunschmid, L Messiaen, J Zschocke, ...
Human mutation 38 (7), 889-897, 2017
262017
DEXUS: identifying differential expression in RNA-Seq studies with unknown conditions
G Klambauer, T Unterthiner, S Hochreiter
Nucleic acids research 41 (21), e198, 2013
262013
cn. FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate
DA Clevert, A Mitterecker, A Mayr, G Klambauer, M Tuefferd, AD Bondt, ...
Nucleic acids research 39 (12), e79-e79, 2011
262011
Enabling large-scale bioinformatics data analysis with cloud computing
J Karlsson, O Torreno, D Ramet, G Klambauer, M Cano, O Trelles
2012 IEEE 10th International Symposium on Parallel and Distributed …, 2012
222012
Interpretable deep learning in drug discovery
K Preuer, G Klambauer, F Rippmann, S Hochreiter, T Unterthiner
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 331-345, 2019
152019
The system can't perform the operation now. Try again later.
Articles 1–20