Mehrdad Farajtabar
Mehrdad Farajtabar
Research Scientist, Google DeepMind
Bestätigte E-Mail-Adresse bei google.com
Titel
Zitiert von
Zitiert von
Jahr
Coevolve: A joint point process model for information diffusion and network co-evolution
M Farajtabar, M Gomez-Rodriguez, Y Wang, S Li, H Zha, L Song
Companion Proceedings of the The Web Conference 2018, 473-477, 2018
1862018
Shaping social activity by incentivizing users
M Farajtabar, N Du, MG Rodriguez, I Valera, H Zha, L Song
Advances in neural information processing systems 27, 2014
1502014
Improved knowledge distillation via teacher assistant: Bridging the gap between student and teacher
SI Mirzadeh, M Farajtabar, A Li, H Ghasemzadeh
AAAI 2020, 2020
144*2020
Dirichlet-hawkes processes with applications to clustering continuous-time document streams
N Du, M Farajtabar, A Ahmed, AJ Smola, L Song
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge …, 2015
1432015
Learning granger causality for hawkes processes
H Xu, M Farajtabar, H Zha
International Conference on Machine Learning, 1717-1726, 2016
1302016
Dyrep: Learning representations over dynamic graphs
R Trivedi, M Farajtabar, P Biswal, H Zha
International Conference on Learning Representations (ICLR), 2019
123*2019
More robust doubly robust off-policy evaluation
M Farajtabar, Y Chow, M Ghavamzadeh
International Conference on Machine Learning (ICML), 1446-1455, 2018
1042018
Fake news mitigation via point process based intervention
M Farajtabar, J Yang, X Ye, H Xu, R Trivedi, E Khalil, S Li, L Song, H Zha
International Conference on Machine Learning, 1097-1106, 2017
1012017
Wasserstein learning of deep generative point process models
S Xiao, M Farajtabar, X Ye, J Yan, L Song, H Zha
arXiv preprint arXiv:1705.08051, 2017
982017
Back to the past: Source identification in diffusion networks from partially observed cascades
M Farajtabar, MG Rodriguez, M Zamani, N Du, H Zha, L Song
Artificial Intelligence and Statistics, 232-240, 2015
832015
Learning time series associated event sequences with recurrent point process networks
S Xiao, J Yan, M Farajtabar, L Song, X Yang, H Zha
IEEE transactions on neural networks and learning systems 30 (10), 3124-3136, 2019
55*2019
Multistage Campaigning in Social Networks
M Farajtabar, X Ye, S Harati, L Song, H Zha
Advances in Neural Information Processing Systems, 4718-4726, 2016
482016
Adapting auxiliary losses using gradient similarity
Y Du, WM Czarnecki, SM Jayakumar, M Farajtabar, R Pascanu, ...
arXiv preprint arXiv:1812.02224, 2018
462018
Recurrent poisson factorization for temporal recommendation
SA Hosseini, A Khodadadi, K Alizadeh, A Arabzadeh, M Farajtabar, H Zha, ...
IEEE Transactions on Knowledge and Data Engineering 32 (1), 121-134, 2018
452018
Correlated cascades: Compete or cooperate
A Zarezade, A Khodadadi, M Farajtabar, HR Rabiee, H Zha
AAAI 2017, 2017
442017
From local similarity to global coding: An application to image classification
A Shaban, HR Rabiee, M Farajtabar, M Ghazvininejad
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2013
392013
NetCodec: Community Detection from Individual Activities
L Tran, M Farajtabar, L Song, H Zha
SIAM International Conference on Data Mining, 2015
362015
Orthogonal Gradient Descent for Continual Learning
M Farajtabar, N Azizan, A Mott, A Li
AISTATS 2020, 2020
332020
Distilling information reliability and source trustworthiness from digital traces
B Tabibian, I Valera, M Farajtabar, L Song, B Schölkopf, ...
Proceedings of the 26th International Conference on World Wide Web, 847-855, 2017
332017
Smart broadcasting: Do you want to be seen?
MR Karimi, E Tavakoli, M Farajtabar, L Song, M Gomez Rodriguez
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge …, 2016
332016
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20