The classification of two-dimensional extended topological field theories CJ Schommer-Pries University of California, Berkeley, 2009 | 281 | 2009 |
Dualizable tensor categories C Douglas, C Schommer-Pries, N Snyder American Mathematical Society 268 (1308), 2020 | 178 | 2020 |
On the unicity of the theory of higher categories C Barwick, C Schommer-Pries arXiv preprint arxiv:1112.0040, 2011 | 161* | 2011 |
Central extensions of smooth 2–groups and a finite-dimensional string 2–group CJ Schommer-Pries Geometry & Topology 15 (2), 609-676, 2011 | 130 | 2011 |
Modular categories as representations of the 3-dimensional bordism 2-category B Bartlett, CL Douglas, CJ Schommer-Pries, J Vicary arXiv preprint arXiv:1509.06811, 2015 | 113 | 2015 |
The balanced tensor product of module categories CL Douglas, C Schommer-Pries, N Snyder | 88 | 2019 |
The classification of two-dimensional extended topological field theories, ProQuest LLC CJ Schommer-Pries Ann Arbor, MI, 2, 2009 | 33 | 2009 |
Extended 3-dimensional bordism as the theory of modular objects B Bartlett, CL Douglas, CJ Schommer-Pries, J Vicary arXiv preprint arXiv:1411.0945, 2014 | 28 | 2014 |
Tori detect invertibility of topological field theories C Schommer-Pries Geometry & Topology 22 (5), 2713-2756, 2018 | 24 | 2018 |
Invertible topological field theories C Schommer-Pries arXiv preprint arXiv:1712.08029, 2017 | 23 | 2017 |
Dualizability in low-dimensional higher category theory CJ Schommer-Pries, J Christopher Topology and field theories 613, 111-176, 2014 | 16 | 2014 |
On the unicity of the homotopy theory of higher categories (2011) C Barwick, C Schommer-Pries arXiv preprint arXiv:1112.0040, 0 | 15 | |
Invertible topological field theories (2017) C Schommer-Pries arXiv preprint arXiv:1712.08029, 0 | 13 | |
The classification of two-dimensional extended topological quantum field theories C Schommer-Pries Ph. D. thesis, UC Berkeley, 2009. Also available at〈 http://sites. google …, 2009 | 10 | 2009 |
The classification of two-dimensional extended topological field theories, 2009 CJ Schommer-Pries arXiv preprint arXiv:1112.1000, 0 | 10 | |
The balanced tensor product of module categories. Kyoto J. Math., 59: 167–179 CL Douglas, C Schommer-Pries, N Snyder arXiv preprint arXiv:1406.4204, 2019 | 9 | 2019 |
A finite-dimensional string 2-group C Schommer-Pries | 8 | 2009 |
Dualizable tensor categories (2013) CL Douglas, C Schommer-Pries, N Snyder arXiv preprint arXiv:1312.7188, 0 | 8 | |
The balanced tensor product of module categories (2014) CL Douglas, C Schommer-Pries, N Snyder arXiv preprint arXiv:1406.4204, 0 | 7 | |
Semisimple field theories detect stable diffeomorphism D Reutter, C Schommer-Pries arXiv preprint arXiv:2206.10031, 2022 | 6 | 2022 |